首页|基于车载激光LiDAR点云数据的路面坑槽自动提取方法研究

基于车载激光LiDAR点云数据的路面坑槽自动提取方法研究

扫码查看
以车载激光LiDAR扫描道路点云数据为研究对象,提出一种基于点云剖面特征描述的坑槽提取方法.首先,对原始点云数据进行滤波处理,获取地面点数据;其次,对道路横纵剖面进行道格拉斯-普克算法的轮廓拟合,将积分不变性与微分特征作为描述算法进行坑槽提取;最后,使用约束条件进行点云聚类实现噪声点的剔除,进一步识别确定提取坑槽.为了验证本文方法的有效性,使用某段道路点云数据进行实验,结果表明,本文方法能够有效提取得到道路面坑槽点,不受坑槽形状的限制,具有较高的精度.
Research on Automatic Extraction of Road Pits Based on Carborne LiDAR Point Cloud Data
Taking the road point cloud data acquired by carborne LiDAR as the research object,a pit extraction method based on point cloud profile characteristic description is proposed. Firstly,the original point cloud data is filtered to obtain the surface point data;secondly,the contour fitting of Douglas Puck algorithm is carried out for the transverse and longitudinal sections of the road,and the integral invariance and differential characteristics are used as the description algorithm to extract the pits;finally,constraint conditions are used to cluster point clouds to eliminate noise points,further identify,determine and extracts pits. In order to verify the effective-ness of this method,we use a section of road point cloud data for experiments,and the results show that this method can effectively ex-tract the road surface pit points,which is not limited by the pit shape,and has high accuracy.

carborne LiDARpoint cloud filteringpitscharacteristic description

郑明丹、孙五斌、罗明生

展开 >

浙江省测绘科学技术研究院,浙江杭州 311100

车载激光LiDAR 点云滤波 坑槽 特征描述

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(10)