首页|基于机载LiDAR点云数据的建筑物三维模型重建方法

基于机载LiDAR点云数据的建筑物三维模型重建方法

扫码查看
以机载LiDAR点云数据为研究对象,提出一套建筑物三维模型重建方法.首先使用渐进三角网滤波算法分类地面点与非地面点,通过训练完成的随机森林模型完成建筑物点云提取;其次将方向作为约束条件,使用随机抽样一致(Random Sample Consensus,RANSAC)算法完成建筑物轮廓线提取并获取屋顶关键点信息;最后使用SharpGL工具包,以建筑物轮廓线与屋顶关键点信息为框架重建建筑物三维模型.以实测机载LiDAR点云数据为例进行实验,结果表明,本文方法能够提取得到完整的建筑物轮廓信息,并具有较高的建筑物模型重建精度.
Building 3D Model Reconstruction Method Based on Airborne LiDAR Point Cloud Data
Taking airborne LiDAR point cloud data as the research object,this paper proposes a set of 3D building model reconstruc-tion methods. Firstly,the progressive TIN filtering algorithm is used to classify the ground points and non-ground points,and the building point cloud is extracted through the trained random forest model;secondly,taking the direction as the constraint condition,we use Random Sample Consensus (RANSAC) algorithm to extract the building contour and obtain the key points of the roof;finally,the SharpGL toolkit is used to reconstruct the 3D models of the buildings based on the building contour and roof key point information. Taking the actual airborne LiDAR point cloud data as an example,the experimental results show that the method in this paper can ex-tract the complete building contour information,and has high building model reconstruction accuracy.

airborne LiDAR point cloud databuilding outlinespoint cloud classificationregularization processinglarge scalethree-dimensional reconstruction

王春燕、郭相相、魏军

展开 >

三和数码测绘地理信息技术有限公司,甘肃天水 741000

机载LiDAR点云数据 建筑物轮廓线 点云分类 规则化处理 大比例尺 三维重建

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(10)