首页|基于Sentinel-2时序数据与随机森林的农作物分类研究——以武汉市为例

基于Sentinel-2时序数据与随机森林的农作物分类研究——以武汉市为例

扫码查看
本研究以湖北省武汉市为研究区域,以PIE-Engine平台上的Sentinel-2 遥感影像作为基础数据源,基于3 个公开数据集制作样本数据集,构建光谱特征、遥感指数特征和NDVI时序特征集合,选取随机森林分类器,进行2018-2021 这4 年间武汉市耕地、非耕地二分类和单季稻、双季稻、其他农作物、非耕地四分类的训练与验证.最终统计、对比并分析二分类和四分类的结果,表明:二分类的精度优于四分类,总体精度均高于 80%;四分类准确度明显优于二分类,结论均以四分类结果为基础;武汉市的单季稻种植较少,双季稻种植较为广泛;单季稻和双季稻的种植面积均呈现在2019 年明显上升,而在2020 年明显下降,在2021 年又明显上升的变化趋势.
Study on Crop Classification Based on Sentinel-2 Time Series Data and Random Forest:A Case Study of Wuhan
This study takes Wuhan city,Hubei province as the research area,takes Sentinel-2 remote sensing images on the PIE-En-gine platform as the basic data source,makes sample datasets based on three open datasets,constructs spectral features,remote sens-ing index features,and NDVI time series feature sets,and selects random forest classifiers to carry out the training and verification of two-category classification of cropland and noncropland and four-category classification of single cropping rice,double cropping rice,other crops and noncropland in Wuhan from 2018 to 2021.The final statistics,comparison and analysis of the results of the two-cate-gory classification and the four-category classification show that the accuracy of the two-category classification is better than the four-category classification,and the overall accuracy is higher than 80%;the correctness of four-category classification is obviously better than that of two-category classification,and the conclusion is based on the results of four-category classification;in Wuhan,single cropping rice is less planted,and double cropping rice is widely planted;the planting area of both single cropping rice and double cropping rice first increased significantly in 2019,then decreased significantly in 2020,and then increased significantly in 2021.

Wuhansample datasetsSentinel-2NDVI time series characteristicsrandom forest

崔傲雪、王超、徐颖琪

展开 >

武汉大学 测绘学院,湖北 武汉 430072

武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430072

武汉大学 资源与环境科学学院,湖北 武汉 430072

武汉市 样本数据集 Sentinel-2 NDVI时序特征 随机森林

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(12)