首页|融合空间注意力与密集连接的遥感影像飞机检测

融合空间注意力与密集连接的遥感影像飞机检测

扫码查看
遥感影像内飞机目标具有尺度小、分布不均、背景复杂等特征,现有方法检测效果不佳.针对此问题,构建了一种基于密集连接机制与空间注意力机制的遥感影像飞机检测模型.首先使用密集连接机制的卷积核与空间注意力模块构成特征提取网络来进行特征捕获,然后通过以浅层特征为基础的特征融合网络获取 4 个尺度的融合特征图来进行检测输出.在混合数据集上对模型进行训练与测试,并与当前主流检测模型对比.结果表明,本文构建的检测模型在精度方面显著优于对比模型,同时在多种复杂环境下表现出很好的泛化能力,且在实验环境中能够满足实时性的要求.
Remote Sensing Image Aircraft Detection Integrating Spatial Attention and Dense Connections
Aircraft targets in remote sensing images have the characteristics of small scale,uneven distribution,and complex back-ground,and the detection effect of existing methods is not promising.Aiming at this problem,a remote sensing image aircraft detec-tion model based on dense connection mechanism and spatial attention mechanism is constructed.First,the convolution kernel of the dense connection mechanism and the spatial attention module are used to form a feature extraction network for feature capture,and then the feature fusion network based on shallow features is used to obtain four-scale fusion feature maps for detection output.Models are trained and tested on mixed datasets and compared with current mainstream detection models.The results show that the detection model constructed in this paper is significantly better than the comparison model in terms of accuracy,at the same time shows good generalization ability in a variety of complex environments,and can meet the real-time requirements in the experimental environment.

remote sensing imagesaircraft target detectiondense connectionsspatial attention mechanism

奚思洋

展开 >

中国建筑材料工业地质勘查中心河北总队,河北 保定 071000

遥感影像 飞机目标检测 密集连接 空间注意力机制

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(12)