首页|基于PSO-VMD-SSA的GNSS站坐标时间序列去噪

基于PSO-VMD-SSA的GNSS站坐标时间序列去噪

扫码查看
受设备及环境等因素影响,GNSS(Global Navigation Satellite System)采集的坐标数据不可避免地存在噪声干扰.传统的变分模态分解(Variational Mode Decomposition,VMD)是将原始信号分解为不同中心频率的分量,基于信号分量、噪声分量特性实现噪声抑制.然而此种去噪方法一方面存在参数选取的主观性的问题;另一方面存在将噪声分量中的有用信息剔除的问题.基于此,本文在VMD方法基础上引入粒子群优化(Particle Swarm Optimization,PSO)算法与奇异谱分析(Singular Spectrum Analysis,SSA)方法,构建新的PSO-VMD-SSA组合去噪方法.使用实测GNSS站坐标时间序列进行去噪实验,结果表明,本文提出的方法较VMD方法、SSA方法去噪效果有显著提升,验证了本文方法的有效性与优越性.
Denoising of GNSS Station Coordinate Time Series Based on PSO-VMD-SSA
Influenced by equipment,environment,and other factors,the GNSS(Global Navigation Satellite System)inevitably col-lects coordinate data with noise interference.Traditional variational mode decomposition(VMD)decomposes the original signal into components with different center frequencies and realizes noise suppression based on the characteristics of signal components and noise components.However,on the one hand,this denoising method has the problem of subjectivity in parameter selection,on the other hand,it has the problem of eliminating the useful information in the noise component.Based on this,this paper introduces Particle Swarm Optimization(PSO)algorithm and Singular Spectrum Analysis(SSA)method on the basis of VMD method to build a new PSO-VMD-SSA combined denoising method.The denoising experiment using the measured GNSS station coordinate time series shows that the proposed method has significantly improved the denoising effect compared with VMD method and SSA method,which verifies the effectiveness and superiority of the proposed method.

variational mode decompositionparticle swarm optimization algorithmsingular spectrum analysistime series denoising

徐荣均、李国洋

展开 >

贵州省地质矿产勘查开发局一○六地质大队,贵州 遵义 563000

贵州省地矿集团,贵州 遵义 563000

变分模态分解 粒子群优化算法 奇异谱分析 时间序列去噪

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(12)