首页|结合多特征的随机森林城市植被提取方法研究

结合多特征的随机森林城市植被提取方法研究

扫码查看
针对城市植被提取研究中国产GF6-WFV影像应用较少,单一特征包含信息量无法更好地获取制备分布信息等问题,本文基于GF6-WFV影像,提取光谱、常用植被指数以及红边植被指数,构建多特征组合的随机森林模型,对城市植被提取进行研究.结果表明:1)多特征组合提取植被时,光谱波段结合常用植被指数以及红边植被指数的提取精度最高,总体精度为87.3%,Kappa系数为0.7386,植被提取精度为80.57%.2)红边植被指数相较于常用植被指数的信息提取中,该指数的相对精度最高.表明本文研究为城市植被信息提取提供了一种具有应用价值的方法.
Study on Extraction of Urban Vegetation Based on Random Forest Combining Multiple Features
There are few applications of GF6-WFV images produced in China in urban vegetation extraction research,and a single fea-ture containing information cannot better obtain distribution information of vegetation. Based on GF6-WFV images,this article extracts spectrum,commonly used vegetation indices,and red edge vegetation indices,constructs a random forest model with multiple feature combinations,and conducts research on urban vegetation extraction. The results indicate that:(1) When extracting vegetation using multiple feature combinations,the spectral band combined with commonly used vegetation indices and red edge vegetation indices has the highest extraction accuracy,with an overall accuracy of 87.3%,a Kappa coefficient of 0.7386,and a vegetation extraction accu-racy of 80.57%. (2) Compared to commonly used vegetation indices,the red edge vegetation index has the highest relative accuracy in information extraction. Therefore,this study provides a method with good application value for extracting urban vegetation informa-tion.

multiple featuresrandom foresturban vegetationred edge vegetation indices

赵莹、金丽华、武建秀、武丽梅

展开 >

黑龙江第一测绘工程院,黑龙江哈尔滨 150025

多特征 随机森林 城市植被 红边植被指数

2024

测绘与空间地理信息
黑龙江省测绘学会

测绘与空间地理信息

影响因子:0.788
ISSN:1672-5867
年,卷(期):2024.47(z1)
  • 13