首页|基于高阶累积量张量分解的联合盲源分离算法

基于高阶累积量张量分解的联合盲源分离算法

Joint Blind Source Separation Algorithm Based on Decomposition of Higher-Order Cumulant Tensors

扫码查看
提出一种基于高阶累积量张量分解的联合盲源分离(JBSS)算法,该算法可以从多组数据集的观测信号中恢复出源信号.首先通过计算多组数据集观测信号的高阶互累积量张量,利用累积量张量潜在的对角结构,将JBSS问题转化为高阶张量CP分解(CPD)问题.接下来,通过张量列分解(TTD)将高阶张量分解为由不高于3阶的多个互连的核张量组成的简单张量网络,由此将高阶CPD问题转化为多个3阶CPD问题.最后,根据TTD与CPD之间的关系,在多次3阶CPD之后,通过依次对因子矩阵进行重新排序与缩放得到多数据集的混合矩阵,进而实现对源信号的分离.实验结果表明,该算法具有较快的运行速度.
A joint blind source separation(JBSS)algorithm based on decomposition of high-order cumulant tensors is proposed.The algorithm recovers the source signals from the observation signals of multiset data.Firstly,the higher-order cross-cumulant tensors of observation signals of multiset data are calculated.Due to the potential diagonal structures of cumulant tensors,the JBSS problem can be transformed into canonical polyadic decomposition(CPD)of a higher-order tensor.Next,by tensor train decomposition(TTD),the higher-order tensor is decomposed into a simple tensor network composed of a set of interconnected core tensors of orders not higher than 3.The CPD of a higher-order tensor thereby is transformed into a set of CPDs of order-3 tensors.Finally,according to the links between TTD and CPD,after several CPDs of order-3 tensors,the mixed matrices of multi-dataset can be obtained by reordering and rescaling the factor matrices sequentially,resulting in the separation of the source signals.Simulation results show that the proposed algorithm operated at a faster speed.

joint blind source separationtensor train decompositioncanonical polyadic decompositionhigher-order cumulant

季策、刘明欣

展开 >

东北大学 计算机科学与工程学院,辽宁 沈阳 110169

联合盲源分离 张量列分解 CP分解 高阶累积量

中央高校基本科研业务费专项中央高校基本科研业务费专项

N2116015N2116020

2024

东北大学学报(自然科学版)
东北大学

东北大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.507
ISSN:1005-3026
年,卷(期):2024.45(1)
  • 20