首页|基于熵权法的旋转机械故障诊断研究

基于熵权法的旋转机械故障诊断研究

扫码查看
在大数据背景下,基于机器学习的旋转机械故障诊断研究发展迅速.对于非线性非平稳的振动信号,提出了基于熵权法优化PSO-SVM故障诊断模型,强化特征提取能力.本文数据来自CWRU数据集和抽水蓄能电站实测数据,首先,分别对每个数据集的四种故障滑动采样、平滑降噪等预处理,其次,对故障样本VMD分解,利用样本熵、能量熵、模糊熵、功率谱熵构建特征向量,采用熵权法选取权值最大的特征向量作为EWM-PSO-SVM模型输入,得到诊断结果,同时与其他方法进行对比证实方法有效性与准确性.
Research on Fault Diagnosis of Rotating Machinery based on Entropy Weight Method
Under the background of big data,the research on fault diagnosis of rotating machinery based on machine learning is developing rapidly.For nonlinear and non-stationary vibration signals,this paper proposes a PSO-SVM fault diagnosis model based on entropy weight method to strengthen the feature extraction ability.The data in this paper are from the CWRU data set and measured data of pumped storage power station.Firstly,the four kinds of fault sliding sampling,smoothing and noise reduction of every data set are preprocessed respectively.Secondly,the fault sample VMD is decomposed,and the sample entropy,energy entropy,fuzzy entropy and power spectrum entropy are used to construct the feature vector.The entropy weight method is used to select the feature vector with the largest weight as the input of the EWM-PSO-SVM model,and the diagnosis results are obtained.At the same time,the validity and accuracy of the method are verified by comparison with other methods.

entropy weight methodparticle swarm optimization algorithmvariational mode decompositionsupport vector machinefault diagnosiskinetic entropy

彭绪意、刘泽、吴中华、聂赛、章志平、姚婵、冯陈、张玉全

展开 >

江西洪屏抽水蓄能有限公司,江西省宜春市 330600

河海大学能源与电气学院,江苏省南京市 211100

熵权法 粒子群算法 变分模态分解 支持向量机 故障诊断 动力学熵

国网新源控股有限公司科技项目资助国家自然科学基金重点项目

SGXYKJ-2022-03452339006

2024

水电与抽水蓄能
国网电力科学研究院

水电与抽水蓄能

影响因子:0.247
ISSN:2096-093X
年,卷(期):2024.10(3)
  • 15