首页|基于场景概率的不确定性主从博弈调度

基于场景概率的不确定性主从博弈调度

扫码查看
为解决确定性博弈中未充分考虑风、光、负荷随机性的问题,本文开展了基于场景概率的不确定性主从博弈调度研究.电网为领导者、风-光-蓄联盟为跟随者,目标是电网总成本最小、联盟收益最大.以SBR-QC算法缩减后的概率场景为基础,通过将其加权后的平均场景输入模型,将不确定性问题转化为确定性的方式进行求解,分别从博弈类型、季节、博弈状态等三个维度进行分析,结果表明:两种博弈调度均发挥了抽水蓄能灵活运行的潜力,实现了促进清洁能源消纳和降低电网负荷波动的预期目标,改善了电网的运行稳定性.综合考虑各种指标,相比确定性博弈,不确定性博弈调度更加优越,可用于实际调度决策参考.
Uncertainty Stackelberg Game Scheduling based on Scenario Probability
In order to slove insufficient consideration of randomness in wind power,photovoltaic power and load for deterministic game.An uncertain optimal scheduling study is developed using the Stackelberg game based on scenario probability.The power grid is the leader,and the wind-photovoltaic-pumped storage union is the follower,with the goal of minimizing the total cost of the power grid and maximizing the benefits of the union.Based on the scenario probability reduced by the SBR-QC algorithm,the uncertainty problem is transformed into a deterministic problem by inputting the weighted average scenario of probability scenarios into the model.The analysis was conducted from three dimensions:game types,seasons,and game states.The results show that both game scheduling methods have played the potential of flexible operation of pumped storage,achieved the expected goals of promoting clean energy consumption and reducing grid load fluctuations,and improved the operational stability of the power grid.The uncertain game scheduling is more superior than the deterministic game by taking into account various indicators,and it can be used as a reference for practical scheduling decisions.

scenario probabilitystackelberg gamewind-photovoltaic-pumped storage gridSBR-QC algorithm

周永斐、梅亚东、王现勋、谢凡仪

展开 >

中铁第一勘察设计院集团有限公司,陕西省 西安市 710043

武汉大学水资源工程与调度全国重点实验室,湖北省 武汉市 430072

长江大学资源与环境学院,湖北省 武汉市 430100

广西壮族自治区水利电力勘测设计研究院有限责任公司,广西壮族自治区 南宁市 530023

展开 >

场景概率 主从博弈 风光蓄网 SBR-QC算法

2024

水电与抽水蓄能
国网电力科学研究院

水电与抽水蓄能

影响因子:0.247
ISSN:2096-093X
年,卷(期):2024.10(6)