首页|带p-Laplacian算子的分数阶微分方程半正系统正解的存在性

带p-Laplacian算子的分数阶微分方程半正系统正解的存在性

扫码查看
对一类带有p-Laplacian算子和含有分数阶积分的奇异非线性项的Riemann-Liouville型分数阶微分方程半正系统正解的存在性进行了分析与研究,其边界条件包括不同阶的分数阶导数、Riemann-Stieltjes积分和无穷点边值条件.基于相关Green函数的性质以及不动点指数定理,得到了参数属于合适区间时,该系统至少存在一个正解的充分条件.通过具体实例验证了所得结果的实用性.
Existence of positive solutions for semipositone system of fractional differential equations with p-Laplacian operator
The existence of positive solutions for a semipositone system of Riemann-Liouville fractional differential equations with p-Laplacian operator and singular nonlinearities including fractional integral,subject to boundary conditions which contain fractional derivatives of differential order, Riemann-Stieltjes integrals and infinite point boundary condition is analyzed.Based on the properties of the related Green function and the fixed point index theorem,a sufficient condition for the existence of at least one positive solution of the system is obtained when the parameters belong to a suitable interval.The practicability of the results was verified by a substantial example.

p-Laplacian operatorRiemann-Liouville fractional differential systemsemipositone systempositive solution

杨可丽、吴克晴

展开 >

江西理工大学理学院,江西 赣州 341000

p-Laplacian算子 Riemann-Liouville分数阶微分系统 半正系统 正解

国家自然科学基金资助项目

61364015

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(1)
  • 15