首页|双通道循环网络情感三元组抽取方法研究

双通道循环网络情感三元组抽取方法研究

扫码查看
传统三元组抽取任务的方面词与意见词的抽取相互关联,采用流水线(Pipeline)或联合(Joint)模型架构会存在误差传递、错误传播等问题.基于上述问题,本文设计基于位置提示的双通道循环网络(Position-prompt dual-channel recurrent neural network,PDRN)模型解决三元组抽取任务.采用预训练BERT模型生成词向量作为模型输入,通过双通道显示交互方法在多个循环中建立同步机制,作为两元组(方面、意见)抽取及配对,使用基于位置提示的BERT-BiLSTM模型进行情感极性判别.在3个三元组抽取数据集进行实验,F1值相较最好的流水线模型和同类联合模型提高了1%~2%,在ASOTE任务上F1值相较基线最高提升了2.9%.
Research of sentiment triplet extraction method based on dual-channel recurrent neural network
In the traditional triple extraction task,the extraction of aspect terms and opinion terms is interrelated,when employing pipeline or joint model architectures,issues such as error propagation and misalignment often arise.To tackle these challenges,this paper presents the Position-prompt Dual-channel Recurrent Neural Network (PDRN)model for solving the triple extraction task.The PDRN model utilizes pre-trained BERT models to generate word embeddings as model inputs,establishing a synchronized mechanism through dual-channel explicit interactions in multiple loops for the extraction and pairing of aspect and opinion term pairs,and employs a position-prompt-based BERT-BiLSTM model for sentiment polarity classification.Experimental results on three triple extraction datasets show an improvement in F1 scores by 1 and 2 percentage points compared to the best-performing pipeline model and similar j oint models.Moreover,on the ASOTE task,the F1 score is enhanced by 2.9% compared to the baseline.

sentiment analysissentiment triplet extractiondeep learningBERT model

邵睿、孙红光、姜鸣鹤、冯国忠、张慧杰

展开 >

东北师范大学信息科学与技术学院,吉林 长春 130117

情感分析 情感三元组抽取 深度学习 BERT模型

国家自然科学基金面上项目中央高校基本科研业务费专项资金资助项目

623770082412022ZD053

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(1)
  • 18