首页|基于深度强化学习的工业网络入侵检测研究

基于深度强化学习的工业网络入侵检测研究

扫码查看
为了有效识别工业网络环境中由多条异常数据共同组合的新型攻击,提出了一种基于深度强化学习的融合模型DQN-LSTM.该模型将流量数据的空间特征和时序特征相结合,展开异常检测.在公开的工控网络天然气工厂数据集上进行实验,DQN-LSTM模型在准确率和F1值上与SVM、CNN、LSTM、DQN等方法相比,本文模型的综合性能更好.
Research on intrusion detection in industrial networks based on deep reinforcement learning
In order to effectively identify novel attacks in industrial network environments that are combined by multiple pieces of anomalous data,we propose a deep reinforcement learning-based fusion model DQN-LSTM based on deep reinforcement learning.The model combines spatial and temporal features of traffic data to unfolding anomaly detection .Experiments are conducted on the publicly available industrial control network natural gas plant dataset,and the model in this paper compares favorably with SVM,CNN,and LSTM in terms of accuracy and F1 value.Compared with SVM,CNN, LSTM,DQN and other methods,the model in this paper has better comprehensive performance.

industrial control systemflow anomaly detectiondeep reinforcement learningDQNLSTM

刘胜全、刘博

展开 >

新疆大学信息科学与工程学院,新疆 乌鲁木齐 830017

工业控制系统 流量异常检测 深度强化学习 DQN LSTM

工信部新疆工业互联网态势感知平台项目

TZXD-S-P-xjtszh01

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(1)
  • 25