首页|带有饱和治疗函数的SIS模型的几类分支分析

带有饱和治疗函数的SIS模型的几类分支分析

扫码查看
研究了具有标准发生率和饱和治疗函数的SIS传染病模型的几类分支.该模型中使用的饱和治疗函数是一个连续且可微的函数,用以说明当治愈率较低以及感染人数较多时延迟治疗所产生的影响.讨论了系统无病平衡点和地方病平衡点的存在性,证明了该系统存在倒向分支,分析了系统平衡点的局部和全局稳定性,讨论了该系统Hopf分支和Bogdanov-Takens分支的存在情况,得出了相应结论并且给出了系统的分支相图,以及针对研究得出的数学结果提出了一些合理化建议.
Several bifurcation analyses of the SIS model with saturated treatment functions
Several bifurcations of the SIS epidemic model with standard incidence and saturation treatment functions are studied.The saturation treatment function used in this model is a continuous and differentiable function that accounts for the effect of delayed treatment when the cure rate is low and the number of infections is large.The existence of disease-free and endemic equilibrium is discussed and it is shown that the system has a backward bifurcation.The local and global stability of the equilibrium of the system are analysed separately.The existence of Hopf and Bogdanov-Takens bifurcations is shown.The corresponding conclusions are drawn,the bifurcation phase diagram of the system is given,and some reasonable suggestions are made for the mathematical results obtained from the study.

epidemic modelsaturation treatmentstabilitybifurcation

张加男、张伟鹏

展开 >

东北师范大学数学与统计学院,吉林 长春 130024

暨南大学数学系,广东 广州 510632

传染病模型 饱和治疗 稳定性 分支

国家自然科学基金资助项目吉林省自然科学基金资助项目

11971096YDZJ202101ZYTS154

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(2)
  • 9