Several bifurcation analyses of the SIS model with saturated treatment functions
Several bifurcations of the SIS epidemic model with standard incidence and saturation treatment functions are studied.The saturation treatment function used in this model is a continuous and differentiable function that accounts for the effect of delayed treatment when the cure rate is low and the number of infections is large.The existence of disease-free and endemic equilibrium is discussed and it is shown that the system has a backward bifurcation.The local and global stability of the equilibrium of the system are analysed separately.The existence of Hopf and Bogdanov-Takens bifurcations is shown.The corresponding conclusions are drawn,the bifurcation phase diagram of the system is given,and some reasonable suggestions are made for the mathematical results obtained from the study.