首页|基于改进GFPGAN的墓室壁画盲人脸修复研究

基于改进GFPGAN的墓室壁画盲人脸修复研究

扫码查看
针对墓室壁画人脸破损严重、纹理模糊不清、噪声较多等问题,提出了E-GFPGAN(Efficiency-Generative Facial Prior Generative Adversarial Network,E-GFPGAN),实现了墓室壁画人脸部分的盲修复.首先用StyleGAN3网络训练生成墓室壁画人脸,为网络提供丰富的壁画人脸先验信息;然后在退化移除模块添加跳跃连接,使用两层空洞卷积代替原有卷积,实现扩大感受野,保留壁画人脸的细节信息;最后将信道分割空间特征转换层(Channel-Split Spatial Feature Transform,CS-SFT)结构的卷积改为空洞卷积降低网络参数量.在自建墓室壁画人脸数据集上进行修复的实验结果表明,NIQE指标平均降低2.2%.证明了网络在墓室壁画人脸盲修复上得到了较好的修复结果.
Research on blind face restoration of Tomb Murals based on improved GFPGAN
In order to solve the problems of grave murals such as serious damage,blurred texture and more noise,an E-GFPGAN (Efficiency-Generative Facial Prior Generative Adversarial Network)was proposed,which realizes the blind inpainting of the face part of the tomb mural.Specifically,the StyleGAN3 network is firstly trained to generate the mural faces of the tomb,which provides rich mural face prior information for the network.Then,the skip connection is added to the degradation removal module,and the original convolution is replaced by two layers of dilated convolution to expand the receptive field and retain the detail information of the mural face.Finally,the convolution of the Channel-Split Spatial Feature Transform (CS-SFT)structure was changed into dilated convolution to reduce the number of network parameters.The restoration is carried out on the self-built tomb mural face data set.Experimental results show that the NIQE index is reduced by 2.2% on average.It is proved that the network can obtain better repair results in the blind restoration of tomb murals.

E-GFPGANtomb muralblind face restorationStyleGAN3

赵静、玄祖兴、黄可佳、李雅馨

展开 >

北京联合大学北京市信息服务工程重点实验室,北京 100101

北京联合大学数理与交叉科学研究院,北京 100101

北京联合大学考古研究院,北京 100191

北京联合大学智慧城市学院,北京 100101

展开 >

E-GFPGAN 墓室壁画 盲人脸修复 StyleGAN3

北京市优秀人才培养资助青年拔尖个人项目北京联合大学人才强校优选计划北京联合大学学科团队一体化建设计划项目北京联合大学重点科研项目

2018000026833ZK57BPHR2020EZ01ZB10202001ZKZD202306

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(2)
  • 7