为了进一步提高点击率预估模型的预估能力,提出了一种融合时序信息并带有注意力机制的广告点击率预估模型AGCN(Attention GRU &Cross Network),该模型采用并行结构融合交叉网络模型和时序模型,实现广告点击率预估过程中多元特征的融合.该模型中交叉网络模型挖掘低阶特征和高阶特征信息,时序模型通过引入带有注意力机制的门控神经单元(GRU with attentional update gate,AUGRU),获取用户兴趣特征在用户长期兴趣演化过程中的贡献程度,进行用户兴趣筛选.实验表明,AGCN模型能有效提高广告点击事件的预测准确率.
An advertisement CTR model integrating temporal information and attention mechanism
In order to further improve the prediction ability of the click-through rate prediction model,this paper proposes an advertisement click-through rate prediction model AGCN(Attention GRU &Cross Network)that integrates time series information and attention mechanism.The model adopts a parallel structure to integrate the Cross Network model and the time series model.,to realize the fusion of multiple features in the process of advertising click-through rate estimation.In this model,the Cross Network model mines low-order features and high-order feature information,and the time series model acquires user interest features by introducing a gated neural unit(GRU with attentional update gate,AUGRU)with an attention mechanism.Contribution degree of user interest screening.Experiments show that the AGCN model can effectively improve the prediction accuracy of advertisement click events.