首页|Dodd-Bullough-Mikhailov 方程与约化变换方程的精确解及φ(ξ)展式法

Dodd-Bullough-Mikhailov 方程与约化变换方程的精确解及φ(ξ)展式法

扫码查看
用经典李群分析法给出了 Dodd-Bullough-Mikhailov方程的约化变换方程和群不变解,用广义tanh函数法分别找到了 Dodd-Bullough-Mikhailov方程的行波解及约化变换方程的显式精确解.用该方程的约化变换方程及精确解构造了一种求解非线性偏微分方程的φ(ξ)展式法,用该方法获得了七阶KdV方程、五阶Kawahara方程和Caudrey-Dodd-Gibbon方程的双曲型、三角型、有理函数型和周期型的显式行波解,并分析了解的动力学行为及性态.
Exact solutions of Dodd-Bullough-Mikhailov equation and its reduced transformation equation and φ(ξ)-expansion method
The reduced transformation equations and group invariant solutions of Dodd-Bullough-Mikhailov(DBM)were given by using Lie group analysing method.The travelling wave solutions of the DBM equation and exact solutions of the reduced transformation equation of the DBM equation were found by using the method of extended tanh-function,respectively.The φ(ξ)-expansion method was proposed by using the reduced transformation equation of the DBM equation and its explicit exact solutions.The hyperbolic,trigonometric,rational function and periodic type explicit travelling solutions of seventh order KdV equation,fifth order Kawahara and Caudrey-Dodd-Gibbon equation were presented by φ(ξ)-expansion method.The dynamic behavior of some travelling wave solutions were also analyzed.Moreover,the φ(ξ)-expansion method can be used to solve some other nonlinear evolution equations.

Dodd-Bullough-Mikhailov equationφ(ξ)-expansion methodtravelling wave solution

林府标、马丽荣、杨洋

展开 >

贵州财经大学数统学院,贵州贵阳 550025

石家庄邮电职业技术学院会计学院,河北石家庄 050000

Dodd-Bullough-Mikhailov方程 φ(ξ)展式法 行波解

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(4)