首页|一类双对角占优H-张量及其应用

一类双对角占优H-张量及其应用

扫码查看
应用张量的结构,定义了一类双对角占优张量,证明了其为H-张量.作为应用给出了非负张量谱半径上下界的估计不等式,改进了经典的非负张量谱半径上下界的Perron-Frobenius 定理.
A class of bi-diagonally dominant H-tensor and its applications
Applying the structure of the tensor,a class of bi-diagonally dominant tensors is defined and proved to be H-tensors.As an application,estimation inequalities is given by this article for upper and lower bounds on the H-spectral radius of non-negative tensors,and improve the classical Perron-Frobenius theorem for upper and lower bounds on the H-spectral radius of non-negative tensors.

bi-diagonally dominant H-tensornon-negative tensorestimation of the H-spectral radius

吕洪斌、林志兴

展开 >

福建省金融信息处理重点实验室,莆田学院,福建莆田 351100

双对角占优H-张量 非负张量 谱半径的估计

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(4)