首页|基于E-DCPose的视频人体姿态估计

基于E-DCPose的视频人体姿态估计

扫码查看
针对视频人体姿态估计中遮挡、关节运动模糊等问题,提出了基于DCPose的人体姿态估计改进算法E-DCPose.E-DCPose在DCPose基础上引入了姿态语义传播、时序热图对齐方法,利用上下文时序信息缓解人体运动过程中关节遮挡和关节运动模糊导致的关节定位不准确问题.同时,通过增加视频帧数为模型提供充分的时序信息,提升人体关键点检测精度.在数据集PoseTrack2017与PoseTrack2018上对E-DCPose各改进模块的有效性进行了消融研究,并与现有模型进行了对比实验分析.实验结果表明,E-DCPose的检测精度优于所有对比模型,并显著优于基线模型DCPose.
Video human pose estimation based on E-DCPose
A human pose estimation algorithm based on E-DCPose is proposed to address issues such as occlusion and motion blur in video human pose estimation.On the basis of the DCPose framework,pose semantic propagation and temporal heatmap alignment methods are introduced to alleviate the problem of inaccurate joint positioning caused by occlusion and motion blur during human motion using contextual temporal information.At the same time,by increasing the number of video frames to provide sufficient temporal information for the model,the accuracy of human key point detection is improved.This article conducted ablation research on the effectiveness of various improved modules of E-DCPose on the datasets PoseTrack2017 and PoseTrack2018,and compared experimental analysis with existing models.The experimental results show that the detection accuracy of E-DCPose is superior to all comparison models and significantly superior to the baseline model DCPose.

human pose estimationE-DCPosepose semantic propagationtemporal heatmap alignment

徐博、蒲东兵、王一可、孙英娟

展开 >

东北师范大学信息科学与技术学院,吉林长春 130117

沈阳城市学院智能与工程学院,辽宁沈阳 110112

长春师范大学计算机科学与技术学院,吉林长春 130032

人体姿态估计 E-DCPose 姿态语义传播 时序热图对齐

2024

东北师大学报(自然科学版)
东北师范大学

东北师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.612
ISSN:1000-1832
年,卷(期):2024.56(4)