首页|温度自适应SMO算法估计锂离子电池的SOC

温度自适应SMO算法估计锂离子电池的SOC

扫码查看
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低.提出一种考虑温度的滑模观测(SMO)法进行SOC估计.基于混合脉冲功率测试(HPPC)实验的数据,得到 18650 型LiFePO4 锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析.温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低 0.3~0.5 个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在 2%左右,常温 25℃工况下误差低于 1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考.
SOC estimation for Li-ion battery used by temperature adaptive SMO algorithm
Existing estimation of the state of charge(SOC)of Li-ion battery does not take into account the reduced accuracy of SOC estimation due to temperature variations.A sliding mode observation(SMO)method considering temperature is proposed for SOC estimation.Based on the data of the hybrid pulse power testing(HPPC)experiments,the fitting equations between the SOC of 18650 type LiFePO4 Li-ion batteries and the temperature and parameters are obtained,and analyzed by semi-physical experiments with the Typhoon system.The average error of the temperature-adaptive SMO algorithm is reduced by 0.3-0.5 percentage points compared with the traditional SMO algorithm under low or normal temperature conditions,and the average error of the SOC quickly estimated directly by the fitting equation is about 2%compared with that of the temperature-adaptive SMO algorithm,and the error is less than 1%under the normal temperature of 25℃,which is able to realize a higher estimation accuracy and provide a good algorithm reference for the quick estimation of SOC.

state of charge(SOC)estimationsliding mode observer(SMO)temperature influenceLi-ion batterysemi physical experimental analysis

吕高、樊郭宇、张嘉蕾、杜君莉、史书怀

展开 >

山西大学电力与建筑学院,山西 太原 030000

国网河南省电力公司电力科学研究院,河南 郑州 450000

荷电状态(SOC)估计 滑模观测(SMO) 温度影响 锂离子电池 半实物实验分析

中国博士后科学基金第三批特别资助(站前)

2021TQ0097

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(3)