首页|基于弛豫电压模型的锂离子电池RUL预测

基于弛豫电压模型的锂离子电池RUL预测

扫码查看
锂离子电池在长期使用过程中呈非线性退化趋势,预测非线性退化对延长电池寿命和确保安全意义重大.提出一种利用弛豫电压作为特征序列的非线性退化拐点预测方法,进行拐点和剩余使用寿命(RUL)的联合预测,建立结合拐点退化特征的RUL预测框架,提高预测精度.通过迁移学习,在不同的电池数据集上验证所提联合预测方法的性能,拐点和RUL预测的平均绝对误差在26次循环内,均方根误差低于28次循环.该方法利用弛豫电压来预测拐点和RUL,从而间接预测电池健康状态(SOH),具有预测精度好、应用范围广等特点.
RUL prediction of Li-ion battery based on relaxation voltage model
Li-ion battery exhibits a nonlinear degradation trend over long-term use.Predicting nonlinear degradation is crucial for extend battery life and ensure safety.A nonlinear degradation knee-point prediction method using relaxation voltage as a feature sequence is proposed,which enables joint prediction of knee-point and remaining useful life (RUL) .A framework for RUL prediction combining knee-point degradation features is established to improve prediction accuracy.The proposed joint prediction method is validated on different battery datasets using transfer learning,the mean absolute error for knee-point and RUL prediction is below 26 cycles,the root mean squared error is below 28 cycles.This method uses relaxation voltage to predict knee-point and RUL,thereby indirectly predicting the state of health (SOH) of battery,with advantages in prediction accuracy and broad applicability.

Li-ion batteryremaining useful life (RUL)knee-point predictionrelaxation voltagestate of health (SOH)

翟健帆、李波、李永利、邓炜

展开 >

中广核风电有限公司,北京 100071

北京市中保网盾科技有限公司,北京 102200

锂离子电池 剩余使用寿命(RUL) 拐点预测 弛豫电压 健康状态(SOH)

电化学储能电站安全健康监控关键技术研究与应用示范项目

020-GN-B-2022-c45-p.0.99-01625

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(4)