首页|基于多尺度TCN的锂离子电池RUL预测

基于多尺度TCN的锂离子电池RUL预测

扫码查看
为降低容量回升和噪声对锂离子电池剩余使用寿命(RUL)预测的影响,提出利用运行数据和容量数据的时序信息,基于多尺度时序卷积网络(TCN)的RUL联合预测方法.使用变分模态分解(VMD)法分解锂离子电池原始容量数据,将衰减过程中的非线性特征和主要衰减趋势分别分解到高频分量和低频分量;针对高频分量,使用多尺度TCN进行滚动迭代预测,以捕获容量的短期变化;针对低频分量,从运行数据中提取特征,输入多尺度TCN进行预测,以捕获容量的长期趋势;最后,将预测结果还原为容量预测值.基于美国航空航天局(NASA)数据集验证的结果表明,该方法的容量预测误差均方根误差(RMSE)最小值为 0.011 1,相应的平均绝对误差(MAE)最小值为 0.008 6,RUL预测误差基本在 2 次循环以内.
Prediction of Li-ion battery RUL based on multi-scale TCN
In order to reduce the impact of capacity recovery and noise on the remaining useful life(RUL)prediction of Li-ion battery,a joint prediction method of RUL based on the multi-scale temporal convolutional network(TCN)is proposed,which uses the timing information of operation data and capacity data.The original capacity data of the Li-ion battery are decomposed using variational mode decomposition(VMD)method,separating the nonlinear features and the main degradation trend into high-frequency and low-frequency components,respectively.The high-frequency components are predicted using a rolling iterative approach with a multi-scale TCN to capture short-term changes in capacity.Features extracted from the operation data are input into the multi-scale TCN to predict the low-frequency components,capturing the long-term trend of the capacity.The prediction results are restored to capacity prediction values.The National Aeronautics and Space Administration(NASA)dataset-based results indicate that the minimum root mean square error(RMSE)of the capacity prediction error is 0.011 1,the corresponding minimum mean absolute error(MAE)is 0.008 6,with the RUL prediction error mostly within two cycles by using this method.

Li-ion batteryremaining useful life(RUL)joint predictionvariational mode decompositionmulti-scale temporal convolutional network(TCN)

彭鹏、万民惠、张领先、陈满、谭启鹏、李勇琦

展开 >

南方电网调峰调频发电有限公司储能科研院,广东 广州 511400

北京四方继保自动化股份有限公司,北京 100085

锂离子电池 剩余使用寿命(RUL) 联合预测 变分模态分解 多尺度时序卷积网络(TCN)

国家重点研发计划项目中国南方电网有限责任公司创新项目

2021YFB2402004STKJXM20210091

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(5)