首页|基于数据驱动与组合模型的锂离子电池SOH估计

基于数据驱动与组合模型的锂离子电池SOH估计

扫码查看
锂离子电池的健康监测很重要.结合数据驱动模型和经验模型,提出一种组合估计模型.首先使用基于长短期记忆网络(LSTM)模型的数据驱动方式进行电池健康状态(SOH)初步估计,然后将工况中的在线估计值用于拟合双指数经验模型,再进一步通过观测值和估计值的误差和增益,更新双指数模型对应的参数,以此进行迭代,实现更精确的SOH实时估计.该组合估计模型能够准确估计锂离子电池的SOH,且当观测器的修正周期为单个循环周期时,估计结果的平均绝对误差(MAE)均值和均方根误差(RMSE)均值分别为 0.003 3 和 0.004 2,优于单纯LSTM数据驱动下的SOH估计性能.
Li-ion battery SOH estimation based on data-driven and hybrid model
Health monitoring of Li-ion battery is important.A hybrid estimation model that combines data-driven and empirical models is proposed.It first uses a data-driven approach based on a long short-term memory(LSTM)model to perform an initial estimation of the state of health(SOH)of Li-ion battery.The online estimates obtained under operating conditions are then used to fit a double-exponential empirical model.Further,the error and gain between the observed values and the estimates are used to update the parameters of the double exponential model iteratively,enabling more accurate real-time SOH estimation.The hybrid estimation model can accurately estimate the SOH of Li-ion battery,with the average mean absolute error(MAE)and the average root mean square error(RMSE)of the estimation results being 0.003 3 and 0.004 2,respectively,when the correction cycle of the observer is a single cycle.Its performance is superior to the SOH estimation using only the LSTM data-driven approach.

Li-ion batteryempirical modelhybrid modeldata-drivenstate of health(SOH)

苏宝定、李波、李永利、邓炜

展开 >

中广核风电有限公司,北京 100071

北京市中保网盾科技有限公司,北京 102200

锂离子电池 经验模型 组合模型 数据驱动 健康状态(SOH)

电化学储能电站安全健康监控关键技术研究与应用示范项目

020-GN-B-2022-c45-p.0.99-01625

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(5)