首页|燃料电池预测模型输出结果统计分析

燃料电池预测模型输出结果统计分析

扫码查看
基于神经网络算法建立的燃料电池寿命预测模型,输出结果都因随机性存在不确定的问题,即每次预测的输出结果都不同.针对此问题,基于长短时记忆(LSTM)神经网络算法建立燃料电池寿命预测模型,多次运行试验样本数据,利用统计学方法对输出结果的分布规律进行统计特性分析,发现基于LSTM神经网络的寿命预测模型,输出结果符合正态分布规律.根据此结论,可采用多次平均结果作为燃料电池寿命预测模型的输出结果,以提升输出结果的预测精度及稳定性.
Statistical analysis of the output results of fuel cell prediction model
Due to the randomness,fuel cell lifetime prediction models based on neural network algorithms have uncertainty in their output results,meaning that the output is different with each prediction.To address this issue,a fuel cell lifetime prediction model based on the long short-term memory(LSTM)neural network algorithm is established.This model is run multiple times on the experimental sample data,statistical methods are used to analyze the statistical characteristics of the distribution of output results.It is found that the output results of the LSTM neural network-based lifetime prediction model follow a normal distribution pattern.Based on this conclusion,the average of multiple results can be used as the output of the fuel cell lifetime prediction model,thereby improving the prediction accuracy and stability of the output results.

fuel celllifetime prediction modelnormal distribution testlong short-term memory(LSTM)neural networkstatistical characterization

鲁源博、侯永平、焦道宽、王要娟

展开 >

同济大学汽车学院,上海 201804

中汽研新能源汽车检验中心(天津)有限公司,天津 300300

上海机动车检测认证技术研究中心有限公司,上海 201805

燃料电池 寿命预测模型 正态分布检验 长短时记忆(LSTM)神经网络 统计特性

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(6)