首页|基于恒压充电数据的锂离子电池SOH估计

基于恒压充电数据的锂离子电池SOH估计

扫码查看
准确估算健康状态(SOH),对锂离子电池的安全运行至关重要.基于恒压(CV)充电工况中的电流数据,提取电流曲线差异性参数作为健康特征(HI),并结合灰狼优化(GWO)-支持向量机回归(SVR)算法,构建HI与SOH的映射关系,获得SOH估计模型.基于两组公开电池测试数据集的验证表明,在完整及非完整CV充电工况下,所提方法的SOH估计均方根误差均低于 2%.基于GWO-SVR、SVR和高斯过程回归等算法的电池SOH估计误差表明,所提方法的综合性能较好.
SOH estimation of Li-ion battery based on constant voltage charging data
Accurate estimation of state of health(SOH)is crucial for the safe operation of the Li-ion battery.Based on the current data under the constant voltage(CV)charging scenario,the difference parameters of the current curves are extracted as health indicators(HI).In order to obtain the SOH estimation model,the gray wolf optimization(GWO)and the support vector regression(SVR)algorithms are combined to construct the mapping relation between HI and SOH.The validation based on two public battery test datasets demonstrates that under both the complete and the incomplete CV charging scenarios,the root-mean-square errors of the SOH estimation by the proposed method are overall less than 2%.The SOH estimation errors are compared with algorithms including GWO-SVR,SVR and Gaussian process regression.it indicates that the proposed method has better comprehensive performance.

Li-ion batterystate of health(SOH)estimationconstant voltage(CV)chargegrey wolf optimization(GWO)algorithmsupport vector regression(SVR)

杨驹丰、李哲、王振、邬明宇、马迷娜、栗欢欢

展开 >

江苏大学汽车工程研究院,江苏 镇江 212013

上海交通大学机械与动力工程学院,上海 200240

石家庄铁道大学安全工程与应急管理学院,河北 石家庄 050043

锂离子电池 健康状态(SOH)估计 恒压(CV)充电 灰狼优化(GWO)算法 支持向量机回归(SVR)

2024

电池
全国电池工业信息中心 湖南轻工研究院

电池

CSTPCD北大核心
影响因子:0.336
ISSN:1001-1579
年,卷(期):2024.54(6)