首页|基于LightGBM和LSTM模型的电力大数据异常用电检测方法研究

基于LightGBM和LSTM模型的电力大数据异常用电检测方法研究

扫码查看
随着双碳经济的提出,智能电网正朝着节能减排的方向发展,而用户的异常用电造成电力资源严重流失.针对传统异常用电检测方法精度低、运行效率慢等问题,提出了一种将LightGBM模型与改进的长短期记忆网模型相结合用于异常用电检测.通过采样和Lightgbm模型相结合进行异常检测,并通过改进长短期记忆网模型给出异常用电类别.通过试验分析了所提方法的优点.结果表明,与传统的检测方法相比,该方法能够快速有效地检测异常用户,检测准确率为98.64%.同时对异常数据进行有效分类,综合分类准确率为96.60%.为异常检测技术的发展提供了一定的参考.
Research on abnormal power consumption detection method of power big data based on LightGBM model and LSTM model
With the proposal of the dual-carbon economy,smart grids are developing in the direction of energy con-servation and emission reduction,and the abnormal power consumption of users has caused serious loss of power re-sources.Aiming at the problems of low accuracy and slow operation efficiency of traditional abnormal power con-sumption detection methods,a lightGBM model combined with an improved long short-term memory network model is proposed for abnormal power consumption detection.Anomaly detection is carried out by combining sampling and lightGBM model,and abnormal electricity consumption category is given by improving long short-term memory net-work model.The advantages of the proposed method are analyzed through experiments.The results show that,com-pared with traditional detection methods,the proposed method can detect abnormal users quickly and effectively,with a detection accuracy of 98.64%,meanwhile,the abnormal data is effectively classified,and the comprehen-sive classification accuracy rate is 96.60%,which provides a certain reference for the development of anomaly de-tection technology.

power transformerabnormal power consumptionLightGBM modelLSTM modeldual-carbon economy

杨志东、丁建武、陈广久、康晓婧、盛萌

展开 >

国网北京市电力公司,北京 100051

电力大数据 异常用电 Lightgbm模型 LSTM模型 双碳经济

2025

电测与仪表
哈尔滨电工仪表研究所 中国仪器仪表学会电滋 测量信息处理仪器分会

电测与仪表

北大核心
影响因子:0.963
ISSN:1001-1390
年,卷(期):2025.62(1)