首页|压缩感知理论演进与动态电能检测方法

压缩感知理论演进与动态电能检测方法

扫码查看
阐述了压缩感知信号稀疏化模型、测量矩阵构造、重构算法设计、压缩检测和压缩感知硬件信号处理系统的演变过程,提出压缩感知理论未来发展需要解决函数序列处理问题,包括解决函数序列信号稀疏化,函数序列信号的测量矩阵构造,测量矩阵的压缩检测(compressed measurement,C M)约束条件,以及降低压缩感知(compressed sensing,CS)硬件系统的复杂度等问题.针对目前压缩感知理论应用中复杂度高、压缩检测算法准确度低的问题,提出了一种伪随机信号动态电能量值的精确同步压缩检测方法,该方法复杂度低,易于硬件实现,研发的硬件实验装置测量误差优于2 × 10-4,为提高压缩检测算法准确度提供了一种解决策略,具有高准确度动态电能测量应用前景.
Evolution of compressed sensing theory and dynamic electric energy measurement method
This paper expounds the evolution process of compressed sensing signal sparse model,measurement matrix construction,reconstruction algorithm design,compressed measurement and compressed sensing hard-ware signal processing system,and puts forward that the future development of compressed sensing theory needs to solve the problems of function sequence processing,including the sparse function sequence signal,the construction of measurement matrix of function sequence signal and CM constraints of measurement matrix,and reduce the complexity of CS hardware system.Aiming at the problems of high complexity and low accuracy of compressed measurement algorithm in the current application of compressed sensing theory,an accurate compressed measurement method of dynamic electric energy value of pseudo-random signal is proposed.The algorithm has low complexity and is easy to implement in hardware.The measurement error of the developed hardware experimental device is better than 2 × 10-4,which provides a solution strategy to improve the accura-cy of compressed detection algorithm,and has the application prospect of high accuracy dynamic electric ener-gy measurement in the future.

compressed sensingcompressed measurementpseudo-random signalelectric energy measurement

武文倩、王学伟

展开 >

北京化工大学信息科学与技术学院,北京 100029

压缩感知 压缩检测 伪随机信号 电能测量

2025

电测与仪表
哈尔滨电工仪表研究所 中国仪器仪表学会电滋 测量信息处理仪器分会

电测与仪表

北大核心
影响因子:0.963
ISSN:1001-1390
年,卷(期):2025.62(1)