首页|融合动力学模拟的机器学习三维成矿预测:以安徽铜山铜矿为例

融合动力学模拟的机器学习三维成矿预测:以安徽铜山铜矿为例

扫码查看
三维定量预测是成矿预测中最重要的前沿方向.由于成矿系统的复杂性,这种预测也最具挑战性.理论驱动的动力学数值模拟和数据驱动的机器学习是进行复杂系统预测的两种最重要的技术手段.本文以融合了动力学模拟结果的机器学习对安徽铜山铜矿的找矿潜力进行三维定量预测.铜山铜矿是个勘探程度相当高的老矿山,找矿难度大,但其积累的大量勘探和研究成果为动力学模拟和机器学习预测创造了有利的条件.首先基于矿区内所有的勘探资料建立该矿床的三维地质模型和三维电阻率模型,展示了矿体与地质要素及电阻率之间的复杂空间关系.在三维地质模型的基础上建立成矿系统的三维动力学模型,进行时间控制的多过程耦合动力学数值模拟,再现成矿系统动力学因素及其结果的时空变化.从三维地质和地球物理模型以及动力学数值模拟结果中选择了 8 个量化的特征变量,通过改变变量组合建立了四种不同的机器学习模型,利用机器学习的随机森林算法进行三维成矿预测.研究结果表明,四个模型在测试样本和验证样本上都获得了很好的预测效果,融合动力学模拟结果、地质因素和电阻率模型的预测效果最好,其在测试集和验证集上的AUC值分别能达 0.998 和 0.999,其前 7%的高概率区基本能包含全部已知矿体,同时显示了在矿区东南部的深部具有一定的找矿潜力,可作为进一步勘查的靶区.
3D Ore Prediction by Integrating Dynamic Simulation with Machine Learning:A Case Study of the Tongshan Copper Deposit,Anhui Province,China
3D quantitative ore prediction is the most advanced frontier in mineral predictive exploration.Such prediction is also the most challenging due to the complexity of the metallogenic system.Dynamics numerical simulations and machine learning(ML)are two major approaches to complex system prediction.In this study,dynamics simulations and machine learning were combined to quantitatively predict mineral potential in 3D space for the Tongshan Cu deposit in Anhui province.The Tongshan copper deposit has been intensively explored,and discovery of new orebodies is extremely difficult due to the scarcity of easy-identified orebodies.However,the huge geological exploration dataset is favorable for dynamic simulation and ML prediction.By integrating all exploration and geological data of the deposit,we first constructed 3D geological and resistivity models of this ore deposit,which showed the complicated spatial association of the orebodies with geological factors and resistivity.Using the 3D dynamic model of the mineralization system constructed on the basis of 3D geological modeling,we ran numerical simulations of coupled multi-process dynamics by explicitly monitoring the time-step,which replayed the spatiotemporal variation of its dynamic factors and their results.Based on the 3D geological and geophysical model and the numerical simulation results,we selected eight quantitative features as variables for the ML prediction and constructed four ML models with different combinations of the feature variables.The random forest(RF)algorithm was used for ML prediction of this mineralization system.The RF computation results showed that the four models achieved perfect prediction performance for both testing and validation samples.The RF model comprising all the dynamic,geological,and geophysical features exhibited the best prediction performance.The AUC values of the test and validation sets reached 0.998 and 0.999,respectively,and its top 7%high prediction probability domains covered nearly all existing orebodies.The ML prediction results show that there is a high-potential zone at depth in the southeast part of the mining area,which can be the target for further exploration.

3D modelingdynamics simulationmachine learning predictionTongshan copper deposit

毕晨曦、刘亮明、周飞虎

展开 >

中南大学 计算地球科学研究中心/教育部有色金属成矿预测与地质环境监测重点实验室,湖南 长沙 410083

三维建模 动力学数值模拟 机器学习预测 铜山铜矿床

2025

大地构造与成矿学
中国科学院广州地球化学研究所

大地构造与成矿学

北大核心
影响因子:1.45
ISSN:1001-1552
年,卷(期):2025.49(1)