首页|大学生体育锻炼网络指导平台研究

大学生体育锻炼网络指导平台研究

扫码查看
该研究基于大学生体质健康测试数据,利用K-means聚类算法和反向传播(BP)神经网络建立了体质分析模型,并在此基础上,针对各体质类型制定了锻炼方案,建立了课外活动网络指导平台。结果表明,该研究建立的体质分析模型预测精确度达到90%以上,能够较准确地判断大学生的体质类型。将模型嵌入大学生体育锻炼网络指导平台,实现了精准化评价大学生体质类型,并自动化提供运动处方的功能,对大学生养成锻炼习惯具有积极的促进作用。
Research On the Network Guidance Platform for Physical Exercise for College Students
Based on the physical health test data of college students,this study uses K-means clustering algorithm and BP neural network to establish a physical analysis model,develop exercise programs for each physical type,and establish a network guidance platform for extracurricular activities on this basis.Conclusions show:The prediction accuracy of the physique analysis model established in this study reached over 90%,which can accurately determine the type of physical fitness of college students.Embedding the model into the college student physical exercise network guidance platform has achieved the function of accurately evaluating the physical fitness types of college students and automatically providing exercise prescriptions,which has a positive promoting effect on cultivating exercise habits among college students.

Physical healthBP neural networkPhysical exercise guidancePhysical exercise network platform

孔斌

展开 >

复旦大学体育教学部 上海 200433

体质健康 BP神经网络 体育锻炼指导 体育锻炼网络平台

2024

当代体育科技
当代体育科技杂志社

当代体育科技

影响因子:0.375
ISSN:2095-2813
年,卷(期):2024.14(20)