首页|强电磁干扰环境中的水利泵站漏电保护器服役状态智能预测方法

强电磁干扰环境中的水利泵站漏电保护器服役状态智能预测方法

扫码查看
常规的漏电保护器服役状态智能预测以服役状态信号采集为主,受到电磁干扰,预测结果存在不准确的问题.文章设计了强电磁干扰环境中的水利泵站漏电保护器服役状态智能预测方法,建立了水利泵站漏电保护器服役状态预测空间,在漏电保护器役龄增加时,能预测出保护器出现的拒动、误动状态与故障自检状态,满足保护器的运行需求.基于强电磁干扰环境预测漏电保护器服役状态时域,从漏电保护器服役状态信号的时域与频域信号中,获取保护器各元件之间的互连关系,从而确保服役状态预测的准确性.采用对比实验方式,验证了该方法的预测准确性更高,能够进行实际应用.
Intelligent Prediction Method for the Service Status of Leakage Protectors in Water Conservancy Pump Stations under Strong Electromagnetic Interference Environment
Conventional intelligent prediction methods for the service status of leakage protectors primarily rely on the collection of service status signals. These methods, however, are susceptible to electromagnetic interference, leading to inaccuracies in the predictions. This paper presents an intelligent prediction method for the service status of leakage protectors in water conservancy pump stations under strong electromagnetic interference environment. A predictive space for the service status of leakage protectors in water conservancy pump stations is established. As the service age of the protector increases, this method can predict the occurrence of refusal to act, false action, and self-diagnostic fault statuses, meeting the operational requirements of the protector. When predicting the service status of leakage protectors in strong electromagnetic interference environment, the temporal domain is utilized. The interconnections between various components of the protector are obtained from the time and frequency domain signals of the service status, thereby ensuring the accuracy of the service status prediction. Comparative experiments demonstrate the higher prediction accuracy of this method, validating its practical applicability.

strong electromagnetic interference environmentwater conservancy pump stationleakage protectorservice statusintelligent prediction methods

买小虎

展开 >

甘肃水务节水科技发展有限责任公司, 甘肃 兰州 730000

强电磁干扰环境 水利泵站 漏电保护器 服役状态 智能预测方法

2024

中国水能及电气化
水利部水电局 四川省地方电力局 中国水利水电科学研究院

中国水能及电气化

影响因子:0.316
ISSN:1673-8241
年,卷(期):2024.(4)
  • 7