首页|计及误差补偿的两阶段短期电力负荷预测方法

计及误差补偿的两阶段短期电力负荷预测方法

扫码查看
针对短期电力负荷预测中的不确定性和波动性问题,提出了一种计及误差补偿的两阶段短期电力负荷组合预测方法:第一阶段,采用变分模态分解将电力负荷数据分解为若干个简单模态,利用基于萤火虫扰动优化的麻雀搜索算法对双向长短时记忆神经网络的超参数进行寻优,建立负荷预测模型,得到初始负荷预测功率值;第二阶段,综合考虑误差序列以及外界影响因素,建立误差补偿模型,得到误差补偿值,将两个阶段的值相加即为最终的负荷预测结果.以两个地区小区的实际负荷数据进行算例仿真,与其他的组合预测方法相比,本研究提出的方法具有更高的预测精度,平均绝对百分比误差和均方根误差分别达到1.26%、16.20 kW,验证了所提方法的有效性.
Two-Stage Short-Term Power Load Forecasting Method Considering Error Compensation
Aiming at the uncertainty and volatility problems in short-term power load forecasting,a two-stage short-term power load forecasting method considering error compensation was proposed.In the first stage,variational mode decomposition was used to decompose the power load data into several simple modes,and the Sparrow Search Algorithm based on firefly disturbance optimization was used to optimize the hyperparameters of the two-way long short-term memory neural network,and a load forecasting model was established to obtain the initial load forecasting power values.In the second stage,comprehensively considering the error series and external influencing factors,error compensation model was established and the error compensation value was obtained,and the values of the two stages were added together to determine the final load prediction result.Compared with other combined prediction methods using the actual load data of the two regional cells to simulate the example,results show that the method proposed in this study has higher prediction accuracy where the average absolute percentage error and root mean square error can respectively reach 1.26% and 29.76 kW,thus the effectiveness of the proposed method was verified.

short-term load forecastingvariational mode decompositionfirefly algorithmsparrow search algorithmBiLSTM neural networkerror compensation

杨淑凡、王永威、谢闻捷

展开 >

三峡大学 电气与新能源学院,湖北宜昌 443002

短期负荷预测 变分模态分解 萤火虫算法 麻雀搜索算法 双向长短时记忆神经网络 误差补偿

国家自然科学基金资助项目

52107107

2024

电工材料
桂林电器科学研究院

电工材料

影响因子:0.378
ISSN:1671-8887
年,卷(期):2024.(1)
  • 18