首页|基于改进二次模态分解和BiLSTM-Attention的短期电力负荷预测

基于改进二次模态分解和BiLSTM-Attention的短期电力负荷预测

扫码查看
针对短期电力负荷预测中变分模态分解的参数选择缺乏有效优化,采用长短期记忆神经网络预测时存在长期信息弱化等问题,提出了一种基于改进二次模态分解,并利用注意力机制重新分配神经网络中输入权重的预测方法.首先对传统二次模态分解中的分解参数采用分解损失的评价标准进行优化.然后在特征选择的基础上,将注意力机制和正反向记忆层添加到长短期神经网络中,针对各个模态分量分别进行训练预测.最后将子序列预测结果重构输出.算例分析表明,所提方法解决了预测中变分模态分解的参数选择及长期信息的弱化等问题,有效减小了分解损失,具有更高的预测精度.
Short-Term Power Load Prediction Based on Improved Quadratic Mode Decomposition and BiLSTM-Attention
In order to solve the problems of lack of effective optimization of parameter selection of variational mode decomposition in short-term power load prediction and the weakening of long-term information when using long short-term memory neural network prediction, a prediction method based on improved quadratic mode decomposition and redistribution of input weights in neural network by using attention mechanism was proposed. Firstly, the decomposition parameters in the traditional quadratic mode decomposition were optimized by the evaluation standard of decomposition loss. Then, on the basis of feature selection, the attention mechanism and the forward and reverse memory layers were added to the long-term and short-term neural network, and the training prediction was carried out for each modal component separately. Finally, the subsequence prediction results were reconstructed and output. The analysis of the case shows that the proposed method solves the problems of parameter selection and long-term information weakening of variational mode decomposition in prediction, effectively reduces the decomposition loss, and has higher prediction accuracy.

attention mechanismslong-term and short-term neural networksdecomposition lossesquadratic modal decompositionshort-term power load forecasting

梅锦超、张鹏宇、程斌、吴永华

展开 >

三峡大学 电气与新能源学院 湖北宜昌 443002

三峡大学 梯级水电站运行与控制湖北省重点实验室,湖北宜昌 443002

湖北清江水电开发有限责任公司,湖北宜昌 443002

国网湖北省电力公司孝感供电公司,湖北孝感 432000

展开 >

二次模态分解 分解损失 注意力机制 双向长短期神经网络 短期电力负荷预测

国家电网湖北省电力公司科技项目

B715K021003Q

2024

电工材料
桂林电器科学研究院

电工材料

影响因子:0.378
ISSN:1671-8887
年,卷(期):2024.(2)
  • 13