首页|基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法

基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法

扫码查看
目前负荷分解模型大都面向城市用户,忽视了农业用电场景下的负荷关联特性,导致现有负荷分解模型在该场景下的分解效果较差,本文提出了一种基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法.该方法首先采用One-hot编码构建包含离散和连续影响因素的负荷特征矩阵;其次,运用负荷行为关联图来表征用户不同负荷设备间关联关系,并采用图注意力网络对负荷间相关性进行权重优化;最后,构建基于卷积神经网络和长短时记忆网络的农业用户负荷分解模型并进行训练部署.仿真结果显示,本文所提出的基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法相比现有方法分别获得 4.34%和 2.02%的负荷分解精度提升,并更加适用于农业用电场景.
Non-invasive load disaggregation method for agricultural power user based on deep learning and improved load behavior correlation graph
Most research works focus on the scenario of urban user,ignoring the relevance between loads of agricul-tural user that leads to a worsen disaggregation for them.This paper proposes a non-invasive load decomposition method for agricultural users based on deep learning and improved load behavior correlation graph.Firstly,one-hot coding was used to construct the characteristic matrix containing discrete and continuous load features.Secondly,the load behavior correlation graph was used to characterize the relationship between loads,and the graph attention mechanism was introduced to optimize the weight of the load correlation.Finally,an agricultural load disaggrega-tion model based on convolutional neural network and long short-term memory is constructed and trained.Simula-tion results show that,compared with the existing methods,the proposed non-invasive load disaggregation method for agricultural users based on deep learning and improved load behavior correlation graph achieves 4.34%and 2.02%load decomposition accuracy respectively,and is more suitable for agricultural electricity scenario.

machine learningload disaggregationlong short-term memorygraph attention networkfeature ex-traction

高波、董增波、李飞、史轮、陶鹏、孙毅、陈明昊

展开 >

国网河北省电力有限公司营销服务中心,河北 石家庄 050035

国网河北省电力有限公司,河北 石家庄 050021

华北电力大学电气与电子工程学院,北京 102206

机器学习 负荷分解 长短时记忆网络 图注意力网络 特征提取

国网河北省电力公司科技项目

SGHEYX00SCJS2100192

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(1)
  • 18