首页|基于1DCNN和D-S多信息融合的光伏系统直流母线串联电弧故障检测

基于1DCNN和D-S多信息融合的光伏系统直流母线串联电弧故障检测

扫码查看
直流母线是光伏系统输出能源的主干道,由于长期曝晒、风化等作用,电缆、连接器等组件劣化,光伏系统直流母线中发生电弧的可能性急剧上升,极易引发火灾、触电等事故.在光伏系统中,串联电弧故障将使回路电流下降,传统的过流保护无法识别.因此,本文提出基于深度学习和证据理论(D-S)的方法来识别串联电弧故障,该方法基于并联电容器电流和电压信号,采用一维卷积神经网络(1DCNN)对检测数据进行电弧识别;在此基础上将基于单个传感数据的识别结果作为证据,运用D-S多信息合成法则计算得到信度分配,最后利用决策规则判断是否发生串联电弧故障.搭建多参数可调模型获取数据进行测试,结果表明:使用 1DCNN识别方法,基于并联电容器电流和电压信号的串联电弧识别准确率分别为 97.19%和 94.98%,而基于 1DCNN和D-S多信息融合的光伏系统直流串联电弧故障检测的识别准确率可提升至99%以上.
Series arc fault detection of DC bus of photovoltaic system based on 1DCNN and D-S multi-information fusion
DC bus is the main route of photovoltaic system output energy.Due to long-term exposure,weathering and other effects,cables,connectors and other components deteriorate,so the possibility of arcing in the DC bus of photovoltaic system rises sharply,and is easy to cause fire,electric shock and other accidents.In photovoltaic sys-tems,series arc faults will cause the loop current to drop,which can not be recognized by conventional overcurrent protection.Therefore,this paper proposes a method based on deep learning and Dempster-Shafer(D-S)to identify series arc faults,which uses a one-dimensional convolutional neural network(1DCNN)to identify the arc of the detection data based on the current and voltage signals of shunt capacitors.On this basis,the recognition result based on a single sensing data is used as the evidence,and the reliability distribution is calculated by using the D-S multi-information synthesis rule,and finally the decision rule is used to determine whether a series arc fault oc-curs.The results show that the accuracy of series arc recognition based on current and voltage signals of shunt ca-pacitors is 97.19%and 94.98%,respectively,while the recognition accuracy of DC series arc fault detection of photovoltaic system based on 1DCNN and D-S multi-information fusion can be increased to more than 99%.

photovoltaic system1DCNNseries arc faultD-S multivariate information fusionfault detection

李岩、刘鑫月、乔俊杰、王毛桃、王鹏

展开 >

华北电力大学电气工程学院,河北 保定 071003

河北省智能电网配用电技术创新中心(石家庄科林电气股份有限公司),河北 石家庄 050222

光伏系统 1DCNN 串联电弧故障 D-S多元信息融合 故障检测

中央高校基本科研业务费专项河北省智能电网配用电技术创新中心开放课题

2022MS06820211204

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(5)
  • 27