首页|基于双模型混合的电动汽车SOC和剩余里程估计

基于双模型混合的电动汽车SOC和剩余里程估计

扫码查看
为了缓解电动汽车车主里程焦虑的问题,本文提出了一种基于滤波器和神经网络混合的电动汽车荷电状态(SOC)估计方法,该方法可以准确估计电动汽车SOC和剩余里程.首先,利用降维算法和分类算法从实车数据集中分离出5 类能够反映车辆能耗的驾驶行为作为模型输入的一部分.其次,搭建卡尔曼滤波和双层双向长短时记忆神经网络结合的混合模型,该模型可以降低实时数据的噪声,并结合历史数据计算电动汽车SOC和剩余里程.最后将不同的模型输入特征和模型结构作对比,证明提出方法具有较高的精度.
SOC and remaining range estimation for electric vehicles based on dual-model hybrid approach
To alleviate the problem of electric vehicle owners'mileage anxiety,this paper proposes a hybrid filter and neural network-based state of charge(SOC)estimation method for electric vehicles,which can accurately esti-mate the SOC and remaining mileage of electric vehicles.Firstly,a dimensionality reduction algorithm and a classi-fication algorithm are used to isolate five categories of driving behaviors that reflect vehicle energy consumption from the real vehicle dataset as part of the model input.Secondly,a hybrid model combining Kalman filtering and a two-layer bi-directional long short term memory neural network is built,which can reduce the noise of real-time data and combine with historical data to calculate EV SOC and remaining mileage.Finally,different model input fea-tures and model structures are compared to demonstrate the high accuracy of the proposed method.

electric vehiclesSOC estimatesremaining mileage estimatedriving behavior analysisdeep learn-ingKalman filtering

张怀志、林文文、张岳君、项薇

展开 >

宁波大学机械工程与力学学院,浙江 宁波 315211

浙江工商职业技术学院机电工程学院,浙江 宁波 315699

电动汽车 SOC估计 剩余里程估计 驾驶行为分析 深度学习 卡尔曼滤波

国家自然科学基金项目

22078164

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(7)