首页|基于VMD-IKHA-DBN的高压输电电缆局部放电模式识别方法

基于VMD-IKHA-DBN的高压输电电缆局部放电模式识别方法

扫码查看
针对当前高压输电电缆局部放电模式识别准确性不高的问题,本文提出了一种基于VMD-IKHA-DBN的高压输电电缆局部放电模式识别方法.首先分析了高压输电电缆局部放电产生原因及类型,并搭建了高压输电电缆局部放电实验平台用于采集原始信号.然后采用变分模态分解算法完成局部放电的信号分解,并引入多尺度排列熵理论构建特征向量样本集合.最后提出一种基于Logistic混沌映射、动态反向学习和高斯变异的组合策略改进的磷虾群算法用于优化深度信念网络超参数,从而得到基于IKHA-DBN的高压输电电缆局部放电模式识别模型.实验结果证明本文所提出的方法识别准确率达到了98.333 3%且识别效率较高,实现了高压输电电缆局部放电模式的高效准确识别,在电缆运检工作中可以充分发挥工程效能.
Partial discharge pattern recognition method for high voltage transmission cables based on VMD-IKHA-DBN
Aiming at the current problem of low accuracy of partial discharge pattern recognition in high-voltage transmission cables,this paper proposes a partial discharge pattern recognition method for high-voltage transmission cables based on VMD-IKHA-DBN.Firstly,the causes and types of partial discharges in high-voltage transmission cables are analyzed,and an experimental platform for partial discharges in high-voltage transmission cables is con-structed to collect the original signals.Then the Variational Mode Decomposition(VMD)algorithm is used to com-plete the signal decomposition of partial discharges,and the multi-scale arrangement entropy theory is introduced to construct the sample set of feature vectors.Finally,an Improved Krill Herd Algorithm(IKHA)based on the com-bination of Logistic Chaos Mapping,Dynamic Reverse Learning and Gaussian Variation is proposed to optimize the hyper-parameters of Deep Brief Network(DBN),so as to obtain the IKHA-DBN based high voltage transmission cable partial discharge pattern recognition model based on IKHA-DBN.The experimental results prove that the rec-ognition accuracy of the method proposed in this paper reaches 98.3333%and the recognition efficiency is high,which realizes the efficient and accurate recognition of partial discharge patterns of high-voltage transmission cables,and can give full play to the engineering efficiency in cable operation and inspection work.

high-voltage transmission cablespartial dischargepattern recognitionimproved krill herd algo-rithmdeep brief networkvariational mode decomposition

武雍烨、朱光亚、徐忠林、丁玉琴、陈昱圻、张晋瑞、刘希杰、张昊霖

展开 >

国网四川省电力公司成都供电公司,四川 成都 610044

四川大学电气工程学院,四川 成都 610065

华北电力大学电气与电子工程学院,北京 102206

高压输电电缆 局部放电 模式识别 改进的磷虾群算法 深度信念网络 变分模态分解

国网四川省电力公司科技项目

521904230003

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(8)
  • 17