首页|基于MTF维度提升和残差网络的窃电识别方法

基于MTF维度提升和残差网络的窃电识别方法

扫码查看
针对智能电网中的窃电检测问题,通过分析用户日用电量,发现正常用户用电具有季节波动和假期关联特性,窃电用户呈现杂乱无序状态.为此,提出了一种基于马尔可夫转移场的一维到二维图像转换方法,从多个时间尺度挖掘用电特征,再利用引入残差模块的卷积神经网络进行窃电用户识别.在国家电网提供的数据集上进行实验,所提方法具有 94.31%的准确率,验证了其有效性和可行性.
Power theft identification method based on MTF dimension promotion and residual network
To address the problem of electricity theft detection in smart grids,this paper proposes a method based on Markov transfer field for one-dimensional to two-dimensional image conversion.By analyzing daily electricity us-age of clients,it is found that normal clients have seasonal fluctuation and holiday correlation characteristics,while electricity theft clients show disordered states.The proposed method mines electricity usage features from multiple time scales,and then uses convolutional neural networks with residual modules for electricity theft client identifica-tion.Experiments are conducted on a dataset provided by the State Grid Corporation of China,and the proposed method achieves an accuracy of 94.31%,which verifies its effectiveness and feasibility.

electricity theft detectionMarkov transition fielddeep residual networkimage recognition

赵艳龙、柏维、雷江平、汪卓俊、杨勇胜、蒋钟、熊兰

展开 >

国网浙江省电力有限公司安吉县供电公司,浙江 湖州 313300

输变电装备技术全国重点实验室(重庆大学),重庆 400044

国网浙江省电力有限公司湖州供电公司,浙江 湖州 313300

窃电检测 马尔可夫转移场 深度残差网络 图像识别

国家自然科学基金项目

52077012

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(8)
  • 13