首页|基于ATT-TCGNN的综合能源系统多元负荷短期预测

基于ATT-TCGNN的综合能源系统多元负荷短期预测

扫码查看
综合能源系统多元负荷之间存在较强的复杂耦合关系,且多元负荷数据具有较强的波动性与随机性.针对上述特点,提出一种基于图神经网络、注意力机制、变分模态分解的多元负荷短期预测模型.首先,对多元负荷数据进行变分模态分解,削弱其波动性与随机性;然后,通过经注意力机制改进的图学习网络建立充分反映多元负荷耦合联系性、负荷与气象间关联性的图结构,并用图预测网络对图结构与多元负荷历史数据进行分析,实现多元负荷预测;最终,结合亚利桑那州立大学的实际数据对所提出模型与其他模型进行对比分析,结果表明,所提出模型具有更高的预测精度.
Multi-energy load short-term forecasting of integrated energy system based on ATT-TCGNN
In an integrated energy system,there are complex and strong coupling relationships between the multi-energy loads,and multi-energy loads have strong volatility and randomness.In view of the above characteristics,a multi-energy load short-term forecasting model based on graph neural network,attention mechanism and variational mode decomposition is proposed.Firstly,the variational mode decomposition of multi-energy loads is carried out to weaken the volatility and randomness.Then through the graph learning network improved by the attention mecha-nism,a graph structure that fully reflects the coupling connection of multi-energy loads and the correlation between multi-energy loads and meteorology is established,and the graph prediction network is used to analyze the graph structure and the historical data of multi-energy loads to realize the prediction of multi-energy loads.Finally,the proposed model is compared with other models based on the actual data of Arizona State University.The results show that the proposed model has higher prediction accuracy.

integrated energy systemmulti-energy load forecastingshort-termgraph neural networkattention mechanismvariational mode decomposition

李云松、张智晟

展开 >

青岛大学电气工程学院,山东 青岛266071

综合能源系统 多元负荷预测 短期 图神经网络 注意力机制 变分模态分解

国家自然科学基金项目

52077108

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(9)