首页|基于多粒度注意力机制的隔离开关故障诊断

基于多粒度注意力机制的隔离开关故障诊断

扫码查看
针对现有的大多数深度学习方法只能在有限的含标签样本数据下工作,使诊断模型过拟合,导致模型训练时准确率高而投入运用时故障识别准确率低的问题,本文研究隔离开关在不同工况小样本数据集的准确率高诊断方法,构造应用于不同工况下隔离开关故障诊断的多粒度注意力机制(MG-AM)网络框架.此框架首先要对所获得的隔离开关故障数据进行数据预处理,在此程中将获得增强的数据样本以及数据特征库.随之利用时间对比模块对数据故障进行粗比对,初步获取故障工况的几种可能;并通过多粒度语境对比模块对原始数据预测及预测结果与增强数据进行比对.其次充分挖掘并应用已经搜集的样本资源,以含标签和无标签为输入,网络通过半监督以及无监督学习进行优化,以强化输入数据的处理效果.最终搭建诊断模型,实现对未知样本的故障识别.实验结果表明,所设计的网络可以有效利用固有样本对进行故障识别,对目标的平均识别率达到96.47%.
Disconnector fault diagnosis based on multi-granularity attention mechanism
In view of the problem that most existing deep learning methods can only work with limited labeled sam-ple data,which makes the diagnosis model too serious,resulting in high accuracy when training the model but low fault identification accuracy when put into use,this paper studies isolation switches a high-accuracy diagnosis meth-od for small data sample sets in different working conditions,and a Multi-Granular Attention Mechanism(MG-AM)network framework for checking isolation switch fault diagnosis under different working conditions is constructed.First,this framework preprocesses the isolation switch fault data to obtain enhanced data samples and data feature libraries.Next,the time comparison module is used to compare the fault data roughly,and several possibilities of the fault condition are preliminarily obtained.The original data are predicted by the multi-granularity context com-parison module,and the predicted results are compared with the enhanced data.Then,making full use of the col-lected sample data,the labeled and unlabeled sample data are input into the network,and the network is optimized simultaneously through semi-supervised learning and unsupervised learning.Finally,the isolation switch fault diag-nosis model is established to realize the accurate identification of the unknown sample fault data.The experimental results show that the MG-AM network framework can effectively use the inherent samples for fault diagnosis,and has a good recognition rate,with an average recognition rate of 96.47%.

disconnector switchfault diagnosiscontrastive learningmulti-granularity attention mechanism(MG-AM)semi-supervised learning

解骞、刘柏泽、丁进中、闫大鹏、杨晓萍、党建

展开 >

西安理工大学电气工程学院,陕西 西安 710054

国网乌鲁木齐供电公司,新疆 乌鲁木齐 830054

西安交通大学电气工程学院,陕西 西安 710049

隔离开关 故障诊断 对比学习 多粒度注意力机制(MG-AM) 半监督学习

国家自然科学基金项目

52009106

2024

电工电能新技术
中国科学院电工研究所

电工电能新技术

CSTPCD北大核心
影响因子:0.716
ISSN:1003-3076
年,卷(期):2024.43(10)