首页|基于预测-决策框架的综合能源系统优化

基于预测-决策框架的综合能源系统优化

扫码查看
随着可再生能源渗透率的不断提高,大量的不确定性设备给综合能源系统(IES)的安全高效运行带来了威胁.一般解决不确定型优化问题的过程是,依靠大量历史数据并辅助一些人工智能技术进行可再生能源的预测分析,但通常预测和决策分开进行的过程会由于预测误差过大而导致模型的优化目标产生严重恶化.提出了基于K-最近邻(KNN)算法和鲁棒优化(RO)相结合的预测-决策方法改进IES的不确定型优化问题.通过KNN+最小体积(KMV)椭球集的方法构建KMV椭球集,求解在该集合下的两阶段鲁棒模型,得到最优的多能流解.其中,为了平衡IES的鲁棒性和经济性,采用鲁棒可调参数表示不确定集的合适水平.通过仿真算例分析,证明了KMV椭球集的区间大小与可调参数的变化规律,以及该集合的优越性.
The Optimization of Integrated Energy Systems Based on Predictive&Prescriptive Framework
With the increasing permeability of renewable energy,a large number of uncertain devices pose a threat to the safe and efficient operation of the integrated energy system(IES).In general,solving the uncertainty optimization problem relies on a large amount of historical data,and assists some artificial intelligence technology to predict the analysis of renewable energy,but the usual process of separate prediction and decision making can produce serious deterioration of the model's optimization objective due to excessive prediction errors.Therefore,this paper proposes a prediction-decision method based on K-nearest neighbor(KNN)and robust optimization(RO)to improve the uncertainty opti-mization problem of IES.Then,the KMV ellipsoid set is constructed using the KNN+minimum volume(KMV)ellipsoid set method,and the two-stage robust model under the set is solved to obtain the optimal multi-energy flow solution.In order to balance the robustness and economy of IES,robust adjustable parameters are used to represent the appropriate level of the uncertainty set.Finally,through the simulation example,the change rule of the interval size and the adjustable parameters of the KMV ellipsoid set is proved,and the superiority of the set is proved.

integrated energy systemmachine learningrobust optimizationuncertain optimization

崔国伟

展开 >

国网徐州市铜山区供电公司,江苏 徐州 221000

综合能源系统 机器学习 鲁棒优化 不确定型优化

2025

电工电气
苏州电器科学研究所有限公司

电工电气

影响因子:0.254
ISSN:1007-3175
年,卷(期):2025.(1)