首页|基于克里金算法的LSRM多目标优化

基于克里金算法的LSRM多目标优化

Kriging Algorithm-based Multi-objective Optimization of LSRM

扫码查看
针对应用于悬挂式列车的直线开关磁阻电机(LSRM),为提高 LSRM的功率密度,在更小的初级体积下获得更大的牵引力和减重力,提出了一种基于克里金克里金算法对 LSRM进行了多目标优化.首先,建立 LSRM多变量多目标优化设计模型,采用理想点法建立统一的目标函数,并选择影响优化目标的电机尺寸作为优化变量,结合电磁和结构尺寸的实际情况给出了约束条件和优化变量取值范围;其次,确定了优化目标的优先级为平均牵引力、平均减重力和电机初级重量;最后,结合优化目标变化幅度给出了相应的系数向量,该系数向量下目标函数各分量均达到较好的优化效果,其中平均牵引力和平均减重力两项指标超过设计目标值,同时电机初级重量相较于原始尺寸电机也有下降.
Aiming at improving power intensity of linear switched reluctance motors(LSRM)applied to suspended trains,and obtaining larger traction and weight reduction with a smaller primary volume,a multi-objective optimization of LSRM was proposed based on the Kriging algorithm.First a multi-variable and multi-objective optimization design model for LSRM was established,and a unified objective function was established using the ideal point method.The motor size that affects optimization objectives was chosen as the optimization variable.Considering actual condition of electromagnetic and structural dimensions,the constrained conditions and the range of optimization variable values were given.Second the pri-ority of optimization objectives was determined as the average traction,average weight reduction,and primary weight of the motor.Finally the corresponding coefficient vectors were obtained based on the variation range of optimization objec-tives.Under this coefficient vector,each component of objective function achieves better optimization results,with the av-erage traction and average weight reduction exceeding the design target value,and the primary weight of the motor decrea-sing compared to the original size motor.

LSRMKriging algorithmmulti-objective optimizationtraction

邓金发、赵元浩、刘怡、张龙、酒芳恒、谌昊

展开 >

西南交通大学,四川 成都 610000

北京世纪瑞尔技术股份有限公司,北京 100085

直线开关磁阻电机 克里金算法 多目标优化 牵引力

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(1)
  • 2