首页|基于强化学习与Zero-DCE的图像增强方法

基于强化学习与Zero-DCE的图像增强方法

扫码查看
在深度学习技术不断演进的背景下,图像增强技术在图像处理领域备受瞩目.尽管传统的处理方法在改善图像质量方面有所成就,但对于高动态范围、高噪声、低对比度等复杂场景的图像处理需求,其效果通常难以令人满意.采用了创新性的图像增强方法,将图像分解为照明和反射两部分,以实现更为出色的增强效果.综合运用Retinex、Zero-DCE和强化学习技术,提升了图像质量和可视性,在处理复杂场景中展现了显著的效果.通过强化学习和组合损失函数,使得图像增强效果更显著.基于 Retinex理论的实现方式进一步加强了整体算法的性能.此外,结合Zero-DCE的方法,通过深度曲线估计照明和反射两部分,有效区分了不同场景的图像增强需求.
Image Enhancement Based on Reinforcement Learning and Zero-DCE
Against the backdrop of the continuous evolution of deep learning technology,image enhancement technology have garnered significant attention in the field of image processing.While traditional methods have made strides in impro-ving image quality,they often fall short in satisfying the image enhancement demands of complex scenarios such as high dynamic range,high noise,and low contrast.In this challenging environment,this paper adopts an innovative approach to image enhancement by cleverly decomposing the image into illumination and reflection components,achieving superior en-hancement results.By integrating Retinex,Zero-DCE,and reinforcement learning technology,the approach achieves not only enhanced image quality and visibility but also significant effects in handling complex scenes.The combination of clever reinforcement learning and composite loss functions contributes to a more pronounced image enhancement effect.The im-plementation based on the Retinex theory further strengthens the overall algorithm's performance.Additionally,by incor-porating the Zero-DCE method,the approach effectively distinguishes image enhancement needs among different scenes through deep curve estimation of illumination and reflection components.

reinforcement learningimage enhancementZero-DCERetinex

王鹏飞、单新文、奚梦婷、魏晓龙

展开 >

国网江苏省电力有限公司信息通信分公司,江苏 南京 210000

北京智芯微电子有限公司,北京 100192

强化学习 微光增强 Zero-DCE Retinex

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(1)
  • 29