首页|基于多域特征融合及概率神经网络的GIS绝缘故障诊断

基于多域特征融合及概率神经网络的GIS绝缘故障诊断

扫码查看
目前 GIS绝缘监测存在较高的误报率.针对该现象,对 GIS内部绝缘机理进行研究,搭建了实验模拟平台,提出了等相位角的 UHF数据格式技术,采用了短时能量法进行噪声过滤,有效提升了局放数据信息量.研究了基于统计量、时频等方法的局放数据特征提取技术,采用了概率神经网络分类器的机器学习方法建立诊断模型,实际诊断数据结果显示该方法具有极高的诊断精度.成果已应用于多个工程,应用效果良好.
GIS Insulation Fault Diagnosis Based on Multi-domain Feature Fusion and Probabilistic Neural Network
At present,GIS insulation monitoring has a high false positive rate.In view of this,the present work studied the internal insulation mechanism of GIS,built the experimental simulation platform,proposed the UHF data format technology with equal phase angle,and realized obvious increase in partial discharge information quantity by adopting short-time energy method for noise filtering.The feature extraction technology of partial discharge data based on statis-tics,time-frequency and other methods was studied,and the machine learning method of probabilistic neural network classifier was used to establish the diagnosis model.The actual diagnosis data results show that the method has high diag-nostic accuracy,and the results have been applied to many projects with good application effect.

GIS insulation faultequiphase samplingmachine learningUHF

彭曼、史钰潮

展开 >

广州市世科高新技术有限公司,广东 广州 510540

广州致新电力科技有限公司,广东 广州 510400

GIS绝缘故障 等相位角采样 机器学习 UHF

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(1)
  • 7