首页|基于SEPyconv-DETR的无人机航拍绝缘子检测算法

基于SEPyconv-DETR的无人机航拍绝缘子检测算法

扫码查看
针对绝缘子由于大小不一致、被遮挡等因素导致航拍检测效果不佳的问题,提出了一种基于 SEPyconv-DETR的绝缘子检测算法.首先,将Pyconv引入DETR主干网络,有效融合多尺度特征.其次,利用通道注意力SE强化关键特征.然后,将混淆卷积前馈网络(CC-FFN)融合到 transformer中,增强局部感知和相邻 token之间的联系.最后,综合Alpha-IoU与L1 函数构建回归损失,以提高定位精度.实验结果表明,所提算法的检测精度mAP@0.5∶0.95 达到了 64.1%,优于DETR、YOLOv5 等主流算法,并且可有效检测复杂背景下不同尺寸及被遮挡的绝缘子.
SEPyconv-DETR-based Drone-assisted Insulator Detection Algorithm
In view of the problem of poor detection effect of drone-acquired insulator images due to factors such as incon-sistent size and occlusion,an insulator detection algorithm based on SEPyconv-DETR was proposed by the present study.First Pyconv was introduced into the DETR backbone network to effectively fuse multi-scale features.Second the channel attention SE was used to strengthen the key features.Then confusion convolution feedforward network(CC-FFN)was in-tegrated into the transformer to enhance connection between local perception and adjacent tokens.Finally the regression loss is constructed by combining Alpha-IoU and L1 function to improve the positioning accuracy.The experimental results showed that the proposed algorithm can achieve a detection accuracy of mAP@0.5∶0.95 reaching 64.1%and surpassing prevailing algorithms such as DETR and YOLOv5,and can effectively detect insulators with different sizes and occlusions from complex backgrounds.

insulator inspectionDETRPyconvattention mechanismtransformer

曾业战、郭彦东、段志超、钟春良、陈天航

展开 >

湖南工业大学电气与信息工程学院,湖南 株洲 412000

绝缘子检测 DETR Pyconv 注意力机制 transformer

湖南省自然科学基金

2020JJ4276

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(3)
  • 21