首页|基于支持向量机的区域电网光伏发电量预测研究

基于支持向量机的区域电网光伏发电量预测研究

扫码查看
光伏发电量预测通常依赖于历史数据,数据的采集和质量存在差异,不同数据源可能存在误差,这会导致预测结果的不准确,因此提出基于支持向量机的区域电网光伏发电量预测研究.首先预处理光伏发电量数据,通过数据链的平滑划分,再对光伏单位进行归一化处理,进而对不符合常规的发电站数据进行检测,填补数据空缺后导入支持向量机的预测模型,最后在模型优化中实现区域电网光伏发电量的预测.实验中实验组的预测精度为 92.37%,基于改进萤火虫算法的预测方法的预测精度为 85.43%,基于灰色关联与麻雀优化算法的预测方法的预测精度为74.66%.实验结果表示所研究的方法能对光伏发电量进行较精确的预测,可投入使用.
SVM-based Capacity Prediction of Photovoltaic Generations in Regional Grids
Conventional methods of predicting PV generation capacity generally rely on historical data,and different ex-tents of data deviations from various data sources induced by differences in data collection and quality can lead to inaccurate prediction results.Therefore this study proposed a SVM-based prediction method for PV generation capacity in regional grids.First the PV generation data were preprocessed and divided via chain smoothing,and PV units were normalized to detect and extract abnormal power station data.The processed and extracted data were then input into SVM predictive model after gap filling,and finally the PV generation capacity prediction was achieved through the optimized model.The proposed predictive method achieved in the experiment a prediction accuracy of 92.37%,superior to those of methods based on modified firefly algorithm(85.43%)and grey correlation and sparrow optimization algorithm(74.66%),indica-ting a relatively accurate predictive performance and practical applicability.

SVMregional power gridphotovoltaic power generationgeneration capacity prediction

翟孝明

展开 >

水发规划设计有限公司,山东 济南 250100

支持向量机 区域电网 光伏发电 发电量预测

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(3)
  • 5