首页|基于多特征融合的船用发电机运行异常识别研究

基于多特征融合的船用发电机运行异常识别研究

扫码查看
由于船用发电机组结构复杂,运行产生的数据较多且复杂性较高,给发电机的运行异常识别带来严峻挑战,因此研究基于多特征融合的船用发电机运行异常识别方法.采集并预处理船用发电机的运行数据,从运行数据中提取不同类型与维度的船用发电机运行状态特征,对提取到的多特征进行融合处理,采用 SVM分类识别融合后的特征,得到船用发电机运行异常识别结果.实验结果表明,设计方法识别船用发电机运行异常的准确度为 97.68%,验证了该方法的有效性与可行性.
Study on Abnormal Operation Identification of Marine Generators Based on Multi Feature Fusion
Complex structure of marine generator sets and large and complex data generated during operation pose a seri-ous challenge for identifying abnormal operation of generators.Therefore a method for identifying abnormal operation of marine generators based on multi feature fusion was studied.The operation data of marine generators were collected and preprocessed.Different types and dimensions of marine generator operation status features were extracted from the opera-tion data and fused.By using SVM classification,the fused features were identified,obtaining the abnormal operation rec-ognition results of marine generators.Experimental results show that the designed method achieves an accuracy of 97.68%in identifying abnormal operation of marine generators,and thus is effective and feasible.

multi feature fusionmarine generatorabnormal operationabnormal identification

范大鸣

展开 >

渤海船舶职业学院,辽宁 葫芦岛 125100

多特征融合 船用发电机 运行异常 异常识别

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(5)
  • 5