首页|基于K-Means聚类算法的井下电缆双端在线局放定位方法

基于K-Means聚类算法的井下电缆双端在线局放定位方法

扫码查看
常规的电缆局放定位方法以反射信号识别与定位为主,时间同步偏差相对较大,影响最终的局放定位精准度,因此设计了基于K-Means聚类算法的井下电缆双端在线局放定位方法.该方法通过提取井下电缆双端行波模量特征,将井下电缆局放信号进行相模变换,分析相应电荷气隙平衡条件,获取更加准确的双端局放位置.基于 K-Means算法构造电缆在线局放定位聚类中心,将空间距离相似的电缆进行局放判断,排除异常定位数据对聚类结果的影响,从而减小定位误差.采用对比实验验证了该方法的定位精准度高,能应用于实际生活中.
K-means Clustering-based Method for Dual-end Location of Online Partial Discharge of Underground Cables
Conventional methods of locating cable partial discharge mainly rely on reflection signal recognition and ranging,with relatively large time synchronization deviation,which affects overall location accuracy.Therefore an under-ground cable dual-end online partial discharge location method based on K-Means clustering algorithm was designed.By extracting characteristics of traveling wave modulus at both ends of the cable,the method performed phase mode transfor-mation of partial discharge signal and analyzes the corresponding charge air gap balance conditions,thereby obtaining a more accurate dual-end partial discharge location.Based on the K-Means algorithm,a clustering center for online partial discharge was constructed,and cables with similar spatial distances were used for partial discharge judgment to eliminate influences of ranging data anomalies and reduce deviations of results.The proposed method was proved by comparative ex-periment highly accurate and practically applicable.

K-Means clustering algorithmunderground cabledual-endonline partial dischargepositioning method

程维新

展开 >

窑街煤电集团有限公司金河煤矿,甘肃 兰州 730000

K-Means聚类算法 井下电缆 双端 在线局放 定位方法

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(5)
  • 8