首页|基于U-Net的输电线路分割网络研究

基于U-Net的输电线路分割网络研究

扫码查看
针对输电塔杆上线路背景复杂、线路交织、目标模糊导致的图像分割分辨率不高,分割不精准的问题,进行基于 U-Net的线路分割网络研究.首先,采用 VGG16、ResNet34、ResNet50、MobileNetV2 及 DenseNet 作为 U-Net网络的主干特征提取网络;其次,采用BCEWithLogitsLoss和DiceLoss作为网络损失函数;最后,采用统一数据集,通过分析几种网络结构和损失函数下的图像分割精度,研究不同网络结构对输电线路分割的效果.实验结果表明,在此特定分割情景下,使用BCEWithLogitsLoss和DiceLoss混合损失函数的 Dense Net 和 VGG16 模型具有更好的线路分割效果.
U-Net-based Transmission Line Segmentation Network
Segmentation of transmission line images has low resolution and accuracy owing to complex line background,interweaving of lines and blurred targets on towers.In view of this the present work carried out a study on U-Net-based segmentation networks.First VGG16,ResNet34,ResNet50,MobileNetV2 and DenseNet were used as the backbone fea-ture extraction networks of U-Net networks.Second BCEWithLogitsLoss and DiceLoss were used as network loss func-tions.Finally a unified data set was used to study the segmentation utility of several loss functions and network structures by analyzing their image segmentation accuracies.Experimental results showed that under this specific segmentation sce-nario,Dense Net and VGG16 models with BCEWithLogitsLoss and DiceLoss mixed loss functions have better line seg-mentation utilities.

U-Nettransmission lineimage segmentationloss function

陈友坤、刘庆、姜继彬、吴瑀、李康、王昌龙

展开 >

贵州电网有限责任公司毕节供电局,贵州 毕节 551700

U-Net 输电线路 图像分割 损失函数

2022年贵州电网有限责任公司毕节供电局电力技术开发项目

0607002022030101SC00049

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(5)
  • 6