首页|基于无人机巡检、深度学习和自适应阈值的设备发热问题检测方法

基于无人机巡检、深度学习和自适应阈值的设备发热问题检测方法

扫码查看
提出了一种基于无人机巡检、深度学习和自适应阈值的设备发热问题检测方法.该方法首先利用无人机搭载红外热像仪和高清可见光摄像头,对设备进行巡检并获取红外热成像和可见光图像.接着,采用卷积神经网络(CNN)对红外热成像和可见光图像进行特征提取、融合和分类,以识别设备及检测发热问题.然后,通过收集设备历史温度数据和实时监测数据,采用自适应阈值算法动态调整设备发热问题的识别阈值.实验结果表明,该方法在设备发热问题检测方面具有较高的准确性和实用性.
A Detection Method for Equipment Heating Problems Based on Drone Inspection,Deep Learning and Adaptive Threshold
This paper proposes a detection method for equipment heating problems based on drone inspection,deep learn-ing and adaptive threshold.In this method,drones are first equipped with an infrared camera and a high-definition visible light camera and used to inspect the equipment and obtain infrared thermal imaging and visible light images.Second a con-volutional neural network(CNN)is used to perform feature extraction,fusion,and classification of infrared thermal and visible light images to identify equipment and detect heating issues.Then by collecting historical temperature data and re-al-time monitoring data of equipment,an adaptive threshold algorithm is used to dynamically adjust the identification threshold of equipment heating problems.Finally the experimental results show that the method has high accuracy and practicality in detecting equipment heating problems.

drone inspectioninfrared cameradeep learningadaptive threshold

刘建辉、祁亚峰

展开 >

广东电网广州供电局,广东 广州 510000

无人机巡检 红外热成像 深度学习 自适应阈值

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(5)
  • 5