首页|基于PSO-BP的轴流转桨式水轮机协联关系的研究

基于PSO-BP的轴流转桨式水轮机协联关系的研究

扫码查看
轴流转桨式水轮机组效率与水轮机的导叶-桨叶协联关系有着密切的关系.目前水轮机的协联关系是通过线性插值法取得的,其值与水轮机最优运行工况的协联关系有较大差异.针对插值法结果不能正确体现最优协联关系的缺点,利用粒子群神经网络(PSO-BP)对导叶-桨叶关系进行训练测试,获得导叶、桨叶之间的协联关系.通过水轮机组试验,PSO-BP算法的桨叶开度值比线性插值法的桨叶开度值平均减少 3.61%,效率提高了 3.09%.实验结果表明PSO-BP优化后导叶-桨叶协联关系可使水轮机的过水流量减少,节约了水力资源,提高了水轮机的运行效率.
Study on PSO-BP-based Coupling Relationship of Axial Flow Rotor Turbine
The efficiency of Kaplan turbine units is closely related to the guide vane-paddle coupling relationship of the tur-bine.At present,the coupling relationship of hydraulic turbine is obtained by linear interpolation method,and its value is quite different from that of hydraulic turbine in optimal operating condition.In view of the shortcoming that the interpola-tion method cannot correctly reflect the optimal co-coupling relationship,this paper makes use of particle swarm neural network(PSO-BP)to train and test original relationship between guide vane and paddle,and obtains better coupling rela-tionship.Through the hydraulic turbine group test,the paddle opening value of PSO-BP algorithm is reduced by 3.61%on average than that of linear interpolation method,and the efficiency is improved by 3.09%.The experimental results show that the PSO-BP optimized guide vane-paddle coupling relationship can reduce overwater flow,save hydraulic resource and improve operating efficiency of the hydraulic turbine.

Kaplan turbinecoupling relationshipparticle swarm neural networkMATLAB simulation

孙江、韩泓

展开 >

山西能源学院电气与控制工程系,山西 晋中 030600

转桨式水轮机 协联关系 粒子群神经网络 MATLAB仿真

山西省水利科学技术研究与推广项目

2023GW45

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(6)
  • 8