首页|基于深度置信网络的电力系统故障诊断方法

基于深度置信网络的电力系统故障诊断方法

扫码查看
当前电力系统故障诊断节点多为目标式设定结构,诊断效率较低,导致故障诊断的F1接近0,故基于深度置信网络设计一种电力系统故障诊断方法并对其进行验证分析.根据当前的测试需求,采用多层级的方式,提升整体的诊断效率,部署多层级故障数据采集节点.以此为基础,进行故障特征提取,构建深度置信网络电力系统故障诊断模型,采用交叉核验评定的方式来实现故障诊断处理.测试结果表明,通过4个周期的阶段性测定与比对,最终该电力系统故障诊断的F1值为1,为最佳的诊断结果,说明在深度置信网络的辅助和支持下,设计的诊断方法更为精准、高效,具有实际的应用价值.
A Fault Diagnosis Method for Power Systems Based on Deep Belief Networks
Currently most of the fault diagnosis nodes in the power system are set in a target structure,which leads to low diagnostic efficiency and F1 of fault diagnosis approaching 0.Therefore a power system fault diagnosis method based on deep belief networks is designed and validated.Based on the current testing requirements,a multi-level approach is adopt-ed to improve the overall diagnostic efficiency.Multi-level fault data collection nodes are deployed,and based on this,fault feature extraction is carried out.A deep belief network fault diagnosis model for power systems is established,and cross validation evaluation is used to achieve fault diagnosis processing.The test results show that through three cycles of phased measurement and comparison,the F1 value of the power system fault diagnosis is 1 ,which is the best diagnostic result.This indicates that with the assistance and support of deep belief networks,the designed diagnosis method is more accurate and efficient,and has practical application value.

deep belief networkpower systemfault diagnosiscollaborative identification

贾志杰

展开 >

山西省高速公路集团太原有限责任公司,山西 太原 030000

深度置信网络 电力系统 故障诊断 协同识别

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(7)
  • 7